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ABSTRACT
In virtual reality (VR), a user’s virtual avatar can interact with
a virtual object by colliding with it. If collision responses do
not occur in the direction that the user expects, the user expe-
riences degradation of accuracy and precision in applications
such as VR sports games. In determining the response of a
virtual collision, existing physics engines have not considered
the direction in which the user perceived and estimated the col-
lision. Based on the cue integration theory, this study presents
a statistical model explaining how users estimate the direction
of a virtual collision from their body’s orientation and velocity
vectors. The accuracy and precision of virtual collisions can
be improved by 8.77% and 30.29%, respectively, by setting the
virtual collision response in the direction that users perceive.
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CCS Concepts
•Human-centered computing → Virtual reality;
•Computing methodologies→ Perception;

INTRODUCTION
Since the commercialization of head mounted display (HMD)
based devices and hand trackers such as the Leap Motion
Controller, it has become possible to implement VR appli-
cations that have a direct interaction between the user’s body
and virtual objects. To manipulate a virtual object directly
through the body, the user’s body must first be represented as
another virtual object in virtual space, which can be called the
user’s avatar. The system then detects the collision between
the virtual object and the user’s avatar (i.e., collision detection)
so that the object can be moved in the direction of the collision
(i.e., collision response) [47]. This resembles manipulation in
the real world, and the user can easily adapt to the interaction.

Virtual collisions between a user’s avatar and a virtual object
can be detected and simulated by various physics engines.
During the collision, the physics engines iteratively return the
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Figure 1. We proposes a novel collision technique that can improve the
reliability of virtual collision responses. Based on cue integration theory,
our technique ensures that the direction of the collision response is the
same as the direction of the collision that the user estimates.

magnitude and direction of the virtual impact, which affects
the motion of the colliding objects. Based on the laws of
physics, the magnitude and direction of the impact are de-
termined by various factors, such as weight, elasticity, and
friction [47]. Techniques for simulating the physical collision
process for virtual objects have been extensively studied, lead-
ing to high simulation accuracy and precision provided by
commercial physics engines today [6].

However, from the user’s point of view, the virtual collision
process is still essentially different from the collision process
in the real world. In a physical collision process, the same
amount of impact is applied to the user as on the object (i.e.,
Newton’s law of action-reaction), but in a virtual collision,
there is no force transmitted from the virtual object to the
user. In other words, in the virtual collision process, the
user receives different sensory signals than from the physical
collisions that have been experienced in the real world [32].

From past experiences of physical collisions, the user’s brain
has learned a mapping function (i.e., an internal model) be-
tween sensory stimuli resulting from the collision and the
corresponding consequences of the collision [54]. The user
can also use the mapping function to predict the response
during the virtual collision. However, the absence of force
sensations creates a mismatch between the response of the col-
lision predicted by the user’s internal model and the response
actually produced by the system. This causes a decrease in the
accuracy and precision of the collision behavior that the user
plans and performs [33, 18, 2, 44]. In VR sports games such
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as table tennis, the reduced performance and immersion that
players feel may originate from this problem.

There can be three approaches to solving this problem. First,
long training time can allow users to get familiar with virtual
collisions. The user’s internal model itself can be updated
through learning about virtual collision, which may take a long
time [3], and there is indirect evidence that shows the longer
experience in virtual space does not actually lead to improved
usability [55, 66] (i.e., simulator sickness). Secondly, we can
implement a special haptic device to actually impact the user in
virtual collisions. This is the latest approach that studies on VR
interaction techniques have taken [24, 29, 37, 68, 63, 9, 28]. If
the haptic system is implemented properly, it can provide the
user with a situation that closely resembles the actual physical
collision, thus bringing the reliability of the collision to a level
similar to the physical collision. However, this method also
has a disadvantage in that the system is difficult to implement
and the usability may be limited due to the bulky hardware.

Thirdly, the approach taken in this study is to figure out how
the user’s internal model estimates virtual collisions and pro-
vides a response accordingly. For example, we can describe
what sensory signals are given to the user during the collision
and how the user perceives the collision from them, and then
provide a response in the exactly way perceived by the user.
This method will be useful if implemented properly because
it reduces the difference between the user’s predicted colli-
sion response and the system’s actual response, and requires
no extra hardware and less training by the user. However, it
has been rarely attempted because it was difficult to build a
computational model of how users perceived virtual collisions.

Recent advances in cognitive science have enabled a compu-
tational approach to human perception. In particular, the cue
integration theory [16] provides a statistical model that de-
scribes the process by which estimates from different sensory
channels are integrated into the final estimate. For example,
suppose a person perceives the weight of a coffee mug. The
person can estimate the weight differently through a visual
cue like cup size and the kinesthetic cue felt when actually
lifting it. The theory explains that humans perceive the final
cup weight through maximum likelihood estimation (MLE)
based on the reliability of those two different estimates.

Based on the cue integration theory, this study mathematically
describes how users estimate the direction of virtual collisions.
We assume that in the process of virtual collision, the user
can estimate the direction of the virtual collision from the
orientation and velocity of his or her body perceived through
the visual and the kinesthetic sensation (see Fig. 1). We
can express the reliability of those two directional estimates
mathematically and then express the user’s final estimation of
the collision direction, resulting from the MLE. Finally, our
collision technique generates the response of the collision in
the user’s perceived direction. From this, the accuracy and
precision of the virtual collision response can be improved.

The collision technique proposed in this study is imple-
mented and tested for a situation similar to a VR sports
game in which a hand, represented by a plate-shaped avatar,

hits a ball. The situation where a human-controlled plate
collides with a virtual ball is widely used in VR games
today. For example, in Steam, the most popular online
game platform, there are many VR games fitted to this
condition such as Racket:NX, Eleven:Table Tennis VR,
First Person Tennis, Magical Squash, and Holoball.

The study is divided into three parts. In the first part, we
present a statistical model that describes the user’s estimation
of the virtual collision direction. The second part describes
a calibration user study to determine the free parameters of
the proposed model at the population-level. The third part
describes a user study comparing the accuracy and precision
of our collision technique with a baseline.

RELATED WORK
Simulating Collisions for Virtual Objects
Physically realistic simulation of the collision process between
virtual objects is a traditional research topic in computer graph-
ics. The various studies on this study can be subdivided into
research on two techniques: collision detection and collision
response [47]. Collision detection techniques literally aim to
determine when, where and, how two virtual objects intersect
[15]. Collision response techniques determine what forces are
applied to two objects due to the detected collision.

Earlier collision detection and collision response studies have
focused on simulating physically accurate and realistic colli-
sions. In this case, the important physics related to the col-
lision are elasticity and friction. Elasticity determines the
repulsive force between two objects in the direction of the
normal vector of the contact surface [47]. Friction determines
the force exerted between two objects in the direction of the
tangential vector of the contact surface [47]. The physics
engines built into 3D development tools such as Unity and
Unreal Engine can consider both the elasticity and friction
phenomena in determining the collision response. Although
they have different biases between stability and accuracy [14,
27], commercial physics engines are all accurate enough [6] to
simulate collisions between virtual objects (not with the user).

Perceptually Adaptive Computer Graphics
In computer graphics, much of the research on the human
factors in the design of the physics engine has been carried out
mainly on the user’s visual perception [52]. Those previous
studies explored how graphics simulations are perceived as
real to the user [17], and how to lower the level of detail (LOD)
of graphics simulations without compromising the realism the
user feels in order to speed up the simulation [4, 35]. Humans
have some degree of imperfection in visually perceiving and
predicting the processes of physical collisions between objects
[50]. By utilizing these human characteristics, we can optimize
the performance of the system by lowering the LOD of the
collision algorithm to the extent that viewers cannot notice the
change [51]. The simulation of the virtual collision can also
be further improved by utilizing other characteristics of the
user’s visual perception, such as selective attention [53, 49]
and context-dependent perception [58].

A recent study dealt with the issue of user perception in sit-
uations where an avatar controlled by a user collides with a
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virtual object [33]. Boxer, a collision technique proposed in
the study, detects collisions at the avatar’s minimum speed
and improves the precision of collision responses over existing
collision techniques. Similar to this study, the Boxer technique
considers the user’s kinesthetic perception in the process of
virtual collisions, but has an additional delay until it detects
a collision and is only applicable to special avatar motions
where the hand is pulled back immediately after touching the
virtual object. The study also did not provide a computational
explanation of how the user estimates the collision direction
during the virtual collision process.

Augmentation of Direct Manipulation in VR and AR
Various haptic devices have been recently proposed that can
be used in VR and AR [24, 29, 37, 68, 63, 9, 28], and they
increase the realism and performance of the interaction by
applying a force similar to that given to the user in the actual
physical collision. However, it is not known whether such
force feedback actually improves the user’s performance in
dynamic applications such as VR sports games. Also, the large
volume of the systems and the complex hardware they require
are obstacles that make them difficult to put into practical use.

Other studies have proposed heuristic-based object manipula-
tion techniques to overcome the low reliability of virtual colli-
sions [41]. The techniques consider how to map commands
such as selection (or grabbing) [2, 65, 1, 5], translation [19, 42,
48], and rotation [42, 48] to the user’s body movement, rather
than directly improving the response of a collision. Other
studies have improved grasping performance by improving
how the user’s hand is physically represented in virtual space
[26, 7, 25]. All these studies do not fundamentally address the
perceptual problems of virtual collisions.

Human Perception in Physical Contact
Humans receive information from various sensory channels in
the process of colliding their body with physical objects [54],
mostly by the pressure and vibration of the contact perceived
by the skin mechanoreceptor [30] and the position and velocity
of the body perceived by the proprioceptor neuron distributed
in muscles and joints [69] (also known as kinesthetic percep-
tion). The position of the body can also be perceived by vision,
which is complementary to proprioception [62, 21].

The human brain builds an internal model [11, 12] of the
collision process as it experiences sensory cues and the con-
sequences of collisions. Research on the predictive brain [8]
explains that the internal model allows humans to predict in
advance the consequences of the collision. When an error
between prediction and actual phenomena is perceived, the
human brain tries to eliminate the error signal by updating its
internal model or by changing its environment through actions
[20]. This explains why the lack of haptic sensations in virtual
collisions increases the user’s cognitive burden and impairs the
accuracy and precision of collision planning and execution.

Summary
In summary, due to the lack of repulsive force given to the
user in the virtual collision process, the user’s internal model
frequently sees the error between the predicted and actual

Figure 2. This study deals with a virtual collision between a virtual ball
and a user’s hand represented by a plate in the virtual space.

phenomena. This can reduce the reliability of the user’s move-
ment plan. However, this problem is rarely studied in the field
of HCI or computer graphics. By matching the direction of the
collision response with the direction of the collision estimated
by the user, the novel collision technique proposed in this study
is a practical solution to improve the accuracy and precision
of the interaction in VR without additional hardware.

MODEL OF COLLISION DIRECTION PERCEPTION
This study proposes a novel collision technique that can gener-
ate the response of a collision in the direction perceived by the
user. To do this, we first build a statistical model explaining
how the user estimates the collision direction and how the
reliability of the estimation changes with the collision speed.

Problem Formulation
In this study, we first assume that to simplify the modeling
process, the user’s body is represented as a single rigid body
in virtual space and it collides with the virtual object. More
specifically, this study assumes that the user strikes an object
with his or her palm and that the user’s hand is represented as
a plate-shaped rigid body in virtual space (see Fig. 2).

Directional Cues Given in Virtual Collision
There are a total of two directional cues given to the user in
the process of moving a hand for a virtual collision. The first
is the unit normal vector (~un) of the palm surface. The second
is the unit velocity vector (~uv) of the hand. The user will be
able to estimate the collision direction separately from each
of these cues (see Fig. 2). The friction between the ball and
the palm also affects the direction of the impact force and the
user can estimate the friction from the visual perception of the
material texture of the ball. However, such visual estimation
is assumed to be unreliable compared to the two kinesthetic
cues described earlier and is therefore not considered in the
implementation of the technique.

If the functions representing the user’s estimation process from
each cue vector are fn() and fv(), the unit collision direction
vectors estimated by the user from each cue (~̂un and ~̂uv) can
be expressed as follows:

~̂un = fn(~un) and ~̂uv = fv(~uv) (1)

Note that the hat notation (ˆ) in the vectors means that the
value is estimated by the user through the perception process,
so they are latent variables that cannot be measured directly.
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Mean and Variance of Estimates
The user’s estimates of collision direction (~̂un and ~̂uv) are
probabilistic variables. This section models the mean and
variance of each estimate.

Mean of Estimates
In psychophysics, Stevens’ law [67] predicts that there is a
power function relationship between the magnitude of the
actual physical quantity and the perceived physical quantity.
However, it is known that the exponent of the power function
is close to 1.0 for proprioception [39, 59, 60] or vision [40, 13,
64] on distance and speed perception. Therefore, linearity can
be assumed in the user’s perception of distance and speed.

The estimation of hand orientation and velocity requires
hand distance and speed estimation for each axis in three-
dimensional space. From the linearity of distance and speed
perception, we can assume that unit vectors representing the
collision direction estimated by the user are unbiased:

~̂µn = E[~̂un] = E[~un] and ~̂µv = E[~̂uv] = E[~uv] (2)

This means that the mean of the collision direction estimated
by the user (~̂un or ~̂uv) is equal to the mean direction of the
actual physical cue vectors (~un or~uv).

Variance of Estimates
The higher the variance of the estimate, the less reliable it
is. To model the variance of the user’s estimated vectors (~̂un
and ~̂uv), we make one heuristic assumption: if the hand is
moving fast, the user’s estimation of the velocity vector of
the hand (~̂uv) will be more reliable than the estimation of the
palm’s normal vector (~̂un). We assume this because if the
hand speed is very fast, the palm’s normal vector will change
very quickly over time compared to the change in the hand’s
velocity vector. This does not give the user enough time to
estimate the normal vector of the palm. According to the drift-
diffusion model of the reaction time [57, 56], the reliability
of the user’s perception decreases when the user is not given
enough time to perceive the state of the surroundings [34].

This assumption can be expressed as a function of the move-
ment speed of the hand (s) as follows:

σ̂n = an · exp(bn · s) and σ̂v = av +1/(exp(bv · s)−1) (3)

Equations above tell us that when the hand speed is very fast
(s→ ∞), the variance of the user’s estimation of ~un (i.e., σ̂2

n )
is greatly increased. In contrast, when the hand speed is very
slow (s→ 0), the user’s estimation of the velocity vector ~uv
has a relatively higher variance (i.e., σ̂2

v ) than the perception
of the normal vector. The a and b parameters are positive
free parameters to be determined for each individual user or
each user population through a calibration experiment. The
calibration process is covered in detail in Study 1.

Integration of Perceived Directions
The cue integration theory [16] provides a statistical model of
human perception. In the model, it is assumed that humans try
to estimate a specific physical quantity S from the environment.
For example, in the case of a virtual collision, the physical
quantity can be the direction vector of the collision response.

The cues that allow estimation of the physical quantity can
then be given from several sensory channels simultaneously.
Let the physical quantity estimated from i-th sensory channel
be Ŝi. This can be expressed from the perceptual estimation
function fi of the i-th sensory channel as follows:

Ŝi = fi(S) (4)

Each perception is a probabilistic value and therefore has a
specific mean (µ̂i = E[Ŝi]) and variance (σ̂2

i = Var[Ŝi]). At
this time, the cue integration theory assumes that the process
of human integrating different estimates into a final one (Ŝ is
statistically optimal [16]. Without prior probability of each
estimate, this integration process can be expressed as the max-
imum likelihood estimation (MLE) as follows:

µ̂ = E[Ŝ] = ∑
i

wiµ̂i with wi =
1/σ̂2

i

∑ j 1/σ̂2
j

(5)

µ̂ is the mean of the integrated estimate and wi is the weight
for the i-th estimate during the integration process. As shown
in the equation, we can see that humans give smaller weights
to the less reliable (or higher variance) cues in the integration
process. As a result, the variance of the integrated estimate
(σ̂2) is lower than the variance of the individual estimates. The
following shows the variance (σ̂2) of the integrated estimate
when two different estimates exist for a physical quantity:

σ̂
2 = σ̂

2
1 σ̂

2
2 /(σ̂

2
1 + σ̂

2
2 ) (6)

Integrated Perception of Collision Direction
Equations 2 and 3 mathematically represent the mean (~̂µn and
~̂µv) and variance (σ̂2

n and σ̂2
v ) of two different estimates of

the user about the direction of the collision. Based on the cue
integration theory, we can explain the process by which the
user integrates two different estimates into one final estimate
of the collision direction. The user is considered to be a
statistically optimal encoder based on MLE:

~µ = E[~̂u] = wn~µn +wv~µv

where wn =
1/σ2

n

1/σ2
n +1/σ2

v
and wv =

1/σ2
v

1/σ2
n +1/σ2

v

(7)

This predicts that as the hand speeds up, users will estimate the
collision direction with a higher weight on the hand velocity
vector (~uv) than the normal vector of the palm (~un).

CUE INTEGRATION COLLISION TECHNIQUE
This study proposes a novel collision response technique based
on the user perception model derived from the previous sec-
tions. The technique generates a response of the collision in
the same direction as the one estimated by the user. If the
direction of the collision response generated from the system
is~ur (see Fig. 2), it can be determined as follows:

~ur = wn~un +wv~uv (8)

~uv and~un can be tracked using motion capture or other hand
tracking techniques (see Fig. 1). wn and wv are weights defined
in Equation 7, which depend on the speed of the hand and can
be calculated for each frame when the an,av, bn, bv values of
Equation 3 are known in advance through a calibration study.
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From the assumption of unbiased collision direction estimation
(see Equation 2), this technique makes the average direction
of the collision response equal to the average of the directions
the user estimates.

E[~ur] = wnE[~un]+wvE[~uv] = wn~̂µn +wv~̂µv = ~̂µ (9)

Calibration of the Model Parameters
Basically, in order to determine the free parameters of the
model (an,av, bn, bv), we have to experimentally measure the
variance of the user’s estimates (σ̂2

n and σ̂2
v ) and then fit it into

Equation 3. However, perceptual variances are latent variables
that are difficult to measure directly through experimentation.
Instead, we can design an experiment to get the parameters in-
directly. The experiment assumes that if the collision response
is performed in the same direction as the user estimated (as in
Equation 9), the variance of the collision response vector itself
(Var[~ur]) will also be minimized. Based on this assumption,
we record the collisions between the user and the virtual object
in various directions and sizes, and then optimize the an, av,
bn, bv values to minimize Var[~ur] for all of the trials. The de-
sign and implementation of the actual calibration experiment
are described in Study 1.

Implementation in Commercial Physics Engines
The proposed collision technique can be easily put to practical
use by modifying the collision response pipeline of existing
physical engines. Existing physics engines return the direction
and magnitude of impact force as a collision response. Our col-
lision technique maintains the magnitude of the impact force
returned by the physics engine, but changes its direction as cal-
culated in Equation 8. Algorithm 1 shows the pseudocode of
our collision technique. In the pseudocode, the magnitude of
the impact force (~I) returned by the collision detection pipeline
(collisionDetected) of the physics engine remains the same,
but the direction changes to the direction estimated by the user.

Most physics engines provide collision response callbacks in a
similar manner. For example, Unity, the most popular game
development platform [43], returns an impact force vector
from the onCollsionEnter callback function the first time a
collision is detected and from the onCollisionStay function
while the collision continues.

As shown in the last line of the pseudocode, other factors
affecting the direction of the collision, such as friction, should

Algorithm 1 Cue Integration Collision Technique
1: ~I,~un,~uv,s,σn,σv,wn,wv,~ur ← 0
2: while CollisionDetected = true do
3: ~I← Impulse vector returned by physics engine
4: ~un,~uv← Unit normal and velocity vector of user’s palm
5: s← Speed of user’s hand
6: σ2

n ← getPerceptionNormalVariance(s)
7: σ2

v ← getPerceptionVelocityVariance(s)
8: wn← getNormalVectorWeight(σ2

n ,σ
2
v )

9: wv← getVelocityVectorWeight(σ2
n ,σ

2
v )

10: ~ur ← wn ·~un +wv ·~uv
11: ~I← |~I| ·~ur

12: ~I← applyFrictionE f f ect(~I)

not be reflected in the impact force vector before our technique
is applied. If so, the effect is overwritten by our technique.

STUDY 1: CALIBRATION OF THE MODEL PARAMETERS
The Study 1 aims to determine the values of the free parame-
ters in our proposed collision perception model (see an, av,bn,
and bv in Equation 3). Participants were required to collide
their main hand in various directions and speeds towards a
virtual ball (see Fig. 3). The analysis then finds those parame-
ter values that minimize the variance of the~ur vector defined
in Equation 8. This calibration procedure is described in the
Calibration of the Model Parameters section.

Method
Participants and Design
We recruited 16 participants (9 females, 7 males). Their aver-
age age was 23.5 (SD=2.89), all without glasses and all right-
handed. Their reported familiarity with the head-mounted
display (HMD) they reported was 2.81 (SD=2.10) on a 7 point
scale, and their familiarity with the interaction with virtual
objects was 2.81 (SD=1.84). They received a gift card of 10 $
as a reward for their participation.

The experiment followed a 6× 3× 2 within-subject design
with three independent variables:
• Ball Direction: Forward, Backward, Right, Left, Up, and Down
• Ball Speed: 1, 2.5, and 6 m/s
• Ball Diameter: 0.2 and 0.07 m

Each Ball Direction condition was set based on the orientation
of the HMD worn by the user (see Fig. 3).

Task
The participant wore an HMD on the head and a rectangular
wooden board on their primary hand. Each finger of the par-
ticipant was fastened to the wooden board with Velcro (see
Fig. 4). Then a virtual ball was shown in front of the partici-
pant’s head. One second after it was created, the ball started
to move in the given Ball Speed condition and Ball Direction
condition. After traveling two meters, the ball returned to its
original position and stopped. The participant who observed
the movement hit the ball by hand when the ball stopped. The
participant’s main hand was represented in virtual space as a
board with the same size and thickness as the wooden board
(see Fig. 3). At this point, the participant was required to
strike the ball in such a way that the motion of the ball just
observed could be reproduced by the collision. Because the
ball did not actually move from the collision, the participant
had to imagine the consequences of the collision. Participants
were not given any other instructions on how to strike the ball.
One second after the collision was complete and the hand was

Figure 3. Experimental settings specific to Study 1
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Figure 4. Common experimental settings used for Study 1 and Study 2

removed from the ball, the trial ended and a new trial began
with new speed and direction conditions.

Apparatus
The experimental application was run on a Windows desktop
PC (64-bit Windows10, Intel Core i7-9700K CPU @ 3.60
GHz, 32 GB RAM, and NVIDIA GeForce GTX 1070 Ti). The
position and orientation of the HMD (Oculus Rift, 1.38)
and the wooden board (20 cm×15cm×1cm, 117 grams) worn
on the hand were tracked from a separate motion capture sys-
tem (Optitrack Prime 17W, eight cameras). On the HMD
and the board, seven and five markers were attached, respec-
tively, as shown in Fig. 4. The group of markers attached
to each object was set up as a single rigid body in motion
capture software. In order to verify that the established rigid
bodies successfully represent the positions of the HMD and
the wooden board, the actual positions of the HMD and the
wooden board are compared with the positions of the rigid
bodies in the Unity scene. As a result, the position error of
the rigid body of the HMD and the wood board was 1.5 mm
(SD= 0.25) and 0.9 mm (SD=0.13), respectively. For making
free movement of the wrist, the underside of the wooden board
was cut as an ellipse shape. The frame rate of the HMD was
maintained at 90Hz, and the sampling rate of motion capture
was maintained at 240Hz. The final experimental application
was implemented through Unity (2019.1.0f2).

Setup and Procedure
The motion capture system was calibrated each time just be-
fore the experiment. Participants sat in a comfortable chair
and filled out a consent form and pre-questionnaire. Then,
after wearing the HMD and the wooden board, the participants
were instructed to stretch their arms out in front of the head for
10 seconds. At this time, the original position of the ball was
determined at the ratio of 8 to 2 between the mean position
of the HMD and board (see Fig. 3). After a practice trial was
performed once for each unique condition (36 times in total),
they performed the main experiment. The experiment gave
the Ball Speed, Ball Direction, and Ball Diameter conditions
in random order, and one unique condition consisted of 20
repeated trials (a total of 720 trials per participant). The ex-
periment took about one hour per participant. We logged the
position, velocity, and orientation of the HMD, wooden board,
and virtual ball along with time stamps during the experiment.

Figure 5. The change in distance between the center point of the par-
ticipant’s hand and the center of the virtual ball when the contact start
timing is t = 0 (left), the hit points of the ball on the wooden board (right)

Results
In total, 11,520 virtual collisions were logged from 16 par-
ticipants. For more accurate calibration, collision detection
was performed directly by analyzing the motion capture data
regardless of the collision detection events from the physics
engine of Unity. The participant’s hand and ball were consid-
ered to collide while the distance between the rigid body of
the wooden board and the center of the ball was less than the
radius of the ball.

During the collision, we calculated the unit normal vector of
the participant’s palm (~un) from the orientation of the wooden
board rigid body. In addition, the unit velocity vector of the
participant’s hand (~uv) and the moving speed of the user’s
hand (s) can be calculated from the velocity vector of the
wooden board. The velocity vector is obtained by numerically
differentiating the trajectory of the center point of the plate.

Outlier Removal
Based on the~un and~uv measured at the moment the hand and
ball first collided, and the angular error between the vectors
and the given Ball Direction vector, we defined and removed
the outliers. We considered trials where the angle error ex-
ceeded the three median absolute deviations (3MAD) [36],
either ~un or ~uv, as outliers. As a result, 628 trials, 5.45%
of the total, were removed and the subsequent analysis was
performed on the remaining 10,892 trials.

Descriptive Statistics
There was no specific instruction on how to strike the ball,
but all the participants struck the ball in a similar manner.
They mainly touched the ball near the point of their finger on
the wooden board (see Fig. 5, right). They mainly moved
their hands to the point beyond the center of the ball (see Fig.
5 left). The speed of the center point of the wooden board
measured at the first contact of the ball and hand was 1.31
(SD=0.62), 1.95 (SD=0.83), and 2.55 (SD=1.10) m/s when
the target Ball Speed was 1, 2.5, and 6 m/s, respectively. The
~un and ~uv measured at the first contact of the ball and hand
showed an angular error of 22.38◦ (SD=15.48) degrees and
20.66◦ (SD=13.52) degrees, respectively, on the basis of the
given Ball Direction vector.

Model Fitting
As described earlier in the Calibration of the Model Parameters
section, we looked for model parameters that minimize the
variance of the integrated collision response vector~ur. More
specifically, this process can be formulated as the following
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Figure 6. The angular variances of the ~ur vector (green) obtained by
integrating ~un (red) and ~uv (blue) are lower than the respective angular
variances that are not integrated.

optimization problem:

minimize
an,av,bn,bv

Var[~ur] = Var[wn~un +wv~uv]

subject to wn =
1/σ2

n

1/σ2
n +1/σ2

v
, wv =

1/σ2
v

1/σ2
n +1/σ2

v

σn = an exp(bns) , σv = av +1/(exp(bvs)−1)

(10)

~un, ~uv, and s are the unit normal vector of the palm, the unit
velocity vector of the palm, and the hand speed, which are
obtained at the first contact of the ball with the wooden board,
and can be obtained for each collision trial. The variance was
calculated as the variance of the angular error with respect
to the mean vector. For all 10,892 trials, optimization was
performed using the patternsearch algorithm provided by
Matlab’s global optimization toolbox. The resulting parame-
ters are as follows: an=1.02, av=2.59, bn=0.75, and bv=173.32.

Discussion
By substituting the four parameters we just obtained into our
model (Equations 3 and 7), we can calculate how much vari-
ance the individual estimates have when the participants esti-
mate the normal vector of the palm (~un) and the velocity vector
of the hand (~uv). Figure 7 shows the result. In the figure, our
model explains that as the hand speed increases, the variance
of the estimate of the normal vector increases, but the vari-
ance of the estimate of the velocity vector remains relatively
constant. According to the cue integration theory, participants
assign higher integration weights to estimates with lower vari-
ance. As a result, the right side of Fig. 7 shows the integration
weights (wn and wv) calculated from the MLE. As the figure
shows, participants will estimate the collision direction almost
entirely on the hand’s velocity vector when the hand speed
begins to exceed 3 m/s.

After optimization, the variance of the integrated vector
(M=13.5, SD=24.4) was lower than that of the individual vec-
tors~un (M=23.1, SD=32.2) or~uv (M=20.1, SD=92.8). This ef-
fect was similarly observed for different ball diameters, speeds,
and directions (see Fig. 6).

Figure 7. When a user estimates palm normal and velocity vectors, each
variance changes as a function of hand speed (left), Weights between
normal and velocity vectors varying as a function of hand speed (right)

STUDY 2: EVALUATION OF COLLISION TECHNIQUE
We implemented the collision technique we proposed in Algo-
rithm 1 using the parameters obtained from Study 1. Study 2
compares the accuracy and precision of the collision response
produced by our collision technique with a baseline. In the
experiment, participants strike a virtual ball by hand. During
the strike, the virtual ball was forced and moved. Participants
were asked to strike the ball so that it hits as close as possible
to the distant target point (see Fig. 8).

Method
Participants and Design
We recruited 18 participants (13 males, 5 females). Their
average age was 23.7 yrs (SD=3.11), all without glasses and
all right-handed. They reported their familiarity with the HMD
as 2.11 (SD=1.24) on a 7 point scale, and their familiarity with
the interaction with virtual objects was 2.11 (SD=1.05). They
received a gift card of 10 $ as a reward for their participation.
The experiment followed a 2×2×2×2 within-subject design
with four independent variables:
• Collision Technique: Conventional Response or Integrated Response
• Target Speed: Slow (collision speed lower than 4 m/s) or Fast

(collision speed higher than 4 m/s)
• Friction: 0.0 or 0.5
• Bounciness: 0.0 or 0.5

Collision Technique: This represents two different techniques
for generating a collision response. The Conventional Re-
sponse condition represents the collision response technique
provided by Unity, the most widely used commercial 3D
development platform. Unity’s physics engine is based on
NVIDIA’s PhysX engine, which is also the most widely used
gaming physics engine [45] and the highest rated physics en-
gine overall [61, 22, 27, 6, 46]. We set the collision detection
mode in Unity to continuous speculative to maximize its per-
formance. Otherwise, we used the default physics setting (2
bounce threshold, 0.005 sleep threshold, 0.01 contact offset,
6 solver iteration, 0.012 fixed timestep, and 1 default solver
velocity iterations). The collision response was then automati-
cally generated from the system.

The Integration Response condition represents our proposed
collision response technique and is implemented using the
parameters obtained from Study 1 as described in Algorithm
1. The technique was implemented using Unity’s physics
engine pipelines. If a collision occurs from the physics en-
gine, the impact force is returned via onCollisionEnter
or onCollisionStay callback function in Unity. Within
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Figure 8. Experimental settings specific to Study 2

the callback function, the Integration technique maintains the
magnitude of the impact force but changes its direction to the
cue integrated vector (~ur) as in Equation 8. After that, the
movement of the object is processed by the physics engine
based on the updated impact force.

Note) The effect of friction in the Unity physics engine is
added after all processes in the collision callback function
have finished. The bounciness only affects the magnitude of
the impact vector. Thus, friction and bounciness effects are
equally applied regardless of the type of Collision Technique.

Target Speed: In order to compare the performance of the two
Collision Techniques over a wide range of speeds, participants
were required to control the speed of the ball hitting the tar-
get at two levels (fast or slow). The criterion of 4 m/s was
determined by a pilot experiment.

Friction and Bounciness: Unity’s physics engine can handle
friction and elastic effects between two colliding objects. In
the material settings panel, users can determine the degree of
friction and bounciness by adjusting parameter values between
0 (no effect) and 1 (maximum effect). To compare the two
techniques in a wide range of situations, friction and bounci-
ness were controlled in two steps: 0.0 and 0.5. Intuitively, if
the friction parameter is 0.0, the frictional effect is similar to
that of an ice surface and 0.5 is similar to that of a wooden
block. If the bounciness parameter is 0.0, it can be considered
as a very hard ball, and if it is 0.5, it is a rubber ball. For each
condition, the material properties of the ball and the user’s
avatar were set identically. Participants were given informa-
tion about the material of each ball, and each ball was created
in a different color (see Fig. 8).

The dependent variables are the accuracy and precision of
the participant’s target hit. For statistical testing, we used the
repeated-measure ANOVA with an α-level of 0.05.

Task and Apparatus
The experimental environment using HMD and wooden board
in Study 2 was set up the same as in Study 1, except the
firmware of the HMD was updated (1.40.1). When the experi-
ment begins, a virtual ball is created which is stopped in front
of the participant. Also farther away, a target plate of a certain
size (1.5m × 1.5m) is placed facing the participant (see Fig.
8). At the center of the target plate is a fixed target point that
the player must hit with the ball. The color of the target point
was green in the Slow condition and red in the Fast condition.
When the participant strikes the ball, the impact force is calcu-
lated using the given Collision Technique and the ball moves

Figure 9. The change in distance between the center point of the partic-
ipant’s hand and the center of the virtual ball when the contact started
timing is t = 0 (left), the hit points of the ball on the wooden board (right)

according to the force. If the speed at which the ball hits the
target plate matches the given Target Speed condition, the tar-
get plate is broken and a new ball is created for the next trial.
All trials that did not meet the ball’s target speed, whether
they hit or missed the target plate, were discarded. If the ball
went 7 meters away from the origin, or moved more than 5
seconds after being hit by hand, the trial was considered a fail-
ure and the ball returned to its original position and restarted.
Participants were asked to aim as accurately as possible.

Setup and Procedure
The motion capture system was calibrated each time just be-
fore the experiment. Participants sat in a comfortable chair
and filled out a consent form and pre-questionnaire. Then
after wearing the HMD and the wooden board, the participants
waited for 10 seconds to determine the baseline HMD posi-
tion. Participants first experimented with one of the Collision
Technique conditions. At the end of the first Collision Tech-
nique, we experimented with another one, which was counter
balanced for each participant. Within a Collision Technique
condition, participants shot the ball 30 times for each Target
Speed, Friction, and Bounciness condition (240 time in one
Collision Technique). Before that, a total of 40 practice shots
were given, five times for each condition. The order of each
condition was randomized. After experimenting with a Col-
lision Technique, the participants wrote a NASA-TLX [23]
report and subjective ratings on the technique. We logged data
related to collisions and rigid bodies.

Results
A total of 9,860 collisions were logged, including 1,220 fail-
ure trials. Participants hit the ball with movements similar to
Study 1 (see Fig. 10). Participants’ average hand speed during
the collision was 2.149 m/s (SD=1.684) in all trials: 1.143 m/s
(SD=0.658) in Slow condition and 3.499 m/s (SD=1.696) in
Fast condition. In addition, the average speed of the hand dur-
ing the collision was 2.154 m/s (SD=1.715) in Conventional
Response condition and 2.145 m/s (SD=1.652) in Integrated
Response. The average time the participants’ hands were in
contact with the ball was 0.108 ms (SD=0.051) in all trials:
0.104 s (SD=0.051) in Conventional Response condition and
0.112 s (SD=0.051) in Integrated Response condition. After
the collision with the hand, the average speed of the ball was
4.739 m/s (SD=3.134) in all trials: 2.245 m/s (SD=0.749) in
Slow condition and 7.036 m/s (SD=2.711) in Fast condition.
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Figure 10. Results of Study 2: The Integrated Response technique im-
proves the accuracy of virtual collisions by 8.77%, precision by 30.26%
(inclusive of all trials), and subjective performance by 26.8%.

The average magnitude of the impact on the ball from the colli-
sion was 1.561 N (SD=1.956) in all trials: 1.677 N (SD=2.181)
in Conventional Response condition and 1.448 N (SD=1.767)
in Integrated Response condition.

Accuracy and Precision
The position in three-dimensional space where the ball hit
the target plate was converted to a two-dimensional plane
coordinate system of the target plate. The position of the
target point in this coordinate system is (0,0) in meters (see Fig.
11). The horizontal coordinates on the plate are represented
by the x-axis, and the vertical coordinates on the plate are
represented by the y-axis. Accuracy is defined as the root-
mean-square deviation (RMSD) of the distance from (0,0) to
the point where the ball hit, and precision is defined as the
standard deviation of the hit point distribution in the x and y
directions. To simplify the analysis, precision was calculated
as the average of the x and y variances. If the coordinates
of the point where the ball hit in the i-th trial are (xi, yi), the
accuracy and precision are expressed as follows:

Accuracy =

√
1
N

N

∑
i=1

(x2
i + y2

i ) [all unit: meters]

Precision =
1
2

(√
1
N

N

∑
i=1

(xi− xi)2 +

√
1
N

N

∑
i=1

(yi− yi)
2

)
N is the total number of trials, and xi and yi are the average of
the x and y coordinates of the hit points, respectively.

Effect of Collision Technique on Accuracy: The effect of the
Collision Technique on the shooting accuracy was not statisti-
cally significant (F(1,17)=2.248, p=0.152, η2

p=0.117). The ac-

curacy was 0.491 (SD=0.092) in Conventional Response condi-
tions and 0.477 (SD=0.102) in Integrated Response conditions.
This indicates that the Integrated Response has improved col-
lision accuracy by 2.85 %. The interaction effect between
Collision Technique and Target Speed on shooting accuracy
was not significant (F(1,17)=2.573, p=0.127, η2

p=0.131).

There was a significant interaction effect between Collision
Technique and Friction on shooting accuracy (F(1,17)=6.638,
p=0.02, η2

p=0.281). From the pairwise comparison, a signif-
icant difference between Conventional Response (M=0.498,
SD=0.089) and Integrated Response (M=0.465, SD=0.104)
was observed when the friction was 0.0 (p=0.01). This means
that without friction, the Integrated Response has improved
shooting accuracy by 6.49 %. If the friction was 0.5, the differ-
ence between the two techniques was not significant (p=0.731).
At that time, the mean accuracy of Conventional Response
and Integrated Response was 0.483 m (SD=0.094) and 0.488
m (SD=0.099), respectively. The interaction effect between
Collision Technique and Bounciness on shooting accuracy was
not significant (F(1,17)=1.425, p=0.249, η2

p=0.077).

Effect of Collision Technique on Precision: The effect of the
Collision Technique on the shooting precision was statistically
significant (F(1,17)=23.788, p <0.001, η2

p=0.583). The preci-
sion was 0.103 (SD=0.038) in Conventional Response condi-
tions and 0.082 (SD=0.027) in Integrated Response conditions.
This indicates that the Integrated Response has improved col-
lision precision by 20.39 %.

The interaction effect between the Collision Technique and
Target Speed on shooting precision was also significant
(F(1,17)=30.12, p <0.001, η2

p=0.639). From the pairwise
comparison, a significant difference between Conventional
Response (M=0.126, SD=0.030) and Integrated Response
(M=0.089, SD=0.027) was observed when the target speed
was Fast (p <0.001). In this case, the Integrated Response
has improved shooting precision by 28.81 %. If the target
speed was Slow, the difference between the two techniques
was not significant (p=0.142). In this case, the mean precision
of Conventional Response and Integrated Response was 0.081
m (SD=0.032) and 0.076 m (SD=0.024), respectively.

There was a significant interaction effect between Collision
Technique and Friction on shooting precision (F(1,17)=9.204,
p=0.007, η2

p=0.351). From the pairwise comparison, a signifi-
cant difference between Conventional Response and Integrated
Response was observed when the friction was 0.0 (p <0.001)
or 0.5 (p=0.011). When friction was 0.0, the mean precision
of the Conventional Response and Integrated Response were
0.106 m (SD=0.038) and 0.079 m (SD=0.028) (25.71 % im-
provement), respectively, and 0.100 m (SD=0.038) and 0.086
m (SD=0.025) (21.36 % improvement) respectively when the
friction was 0.5. The interaction effect between Collision
Technique and Bounciness on shooting precision was not sig-
nificant (F(1,17)=0.078, p=0.783, η2

p=0.005).

Including Failed Trials: The effect of the Collision Tech-
nique on the number of failed trials was statistically significant
(F(1,17)=6.503, p=0.021, η2

p=0.277). The average number
of failed trials in Conventional Response was 4.99 (SD=5.43)
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Figure 11. The ball hit points on the target plate, target point: (0,0)

and the average number of failed trials in the Integrated Re-
sponse was 3.48 (SD=3.43). This means that in the Integrated
Response condition, participants failed about 30.26 % less
than the Conventional Response condition.

We further test the effect of the Collision Technique on accu-
racy and precision, including failed trials. We assumed that the
target plate was wider (10 m × 10 m) than it actually was and
found the contact points that would be hit if the ball continued
to move in failed trials. Trials that did not collide with the
widened plate were still removed. The effect of the Collision
Technique on shooting accuracy (F(1,17)=10.383, p=0.005,
η2

p=0.379) and shooting precision (F(1,17)=21.332, p <0.001,
η2

p=0.557) was statistically significant, including the expected
hit points of failed trials. The accuracy (M=0.562, SD=0.169)
and precision (M=0.122, SD=0.068) of the Integrated Re-
sponse is improved by 8.77% and 30.29%, respectively, com-
pared to the accuracy (M=0.616, SD=0.192) and precision
(M=0.175, SD=0.114) of the Conventional Response.

Performance in Physically Realistic Conditions: Situations
with zero friction or bounciness are difficult to encounter in
reality. Comparing the performances of the techniques only
when the friction and bounciness were both 0.5, the accuracy
was 0.635 (SD=0.222) and 0.567 (SD=0.192) in the Conven-
tional and Integrated conditions (10.7% improvement), and
the precision was 0.201 (SD=0.147) and 0.131 (SD=0.085),
respectively (34.8% improvement).

Workload Index
The scores for the Conventional Response condition are as
follows: mental demand (M=11.1,SD=4.7), physical demand
( M=13.8, SD=5.1), temporal demand (M=9.2, SD=4.4), per-
formance (M=9.7, SD=4.4), effort (M=14.5, SD=3.6), frus-
tration (M= 9.2,SD=4.6). For the Integrated Response con-
dition: mental demand (M=10.5,SD=4.3), physical demand
(M=13,SD=4.6), temporal demand (M=10.2, SD=3.2), perfor-
mance (M=12.3, SD=4.3), effort (14.9, SD=3.4), frustration
(M=8.2, SD=4.7). From the paired sample t-test, the per-
formance score of the Integrated Response was significantly
higher (t(17)=2.31, p=0.034, d=0.54) than the Conventional
Response (26.8 % improvement). The difference between the
two techniques in other scores was not significant (p >0.26).

Subjective Rating
Eight participants commented that the Integrated Response
was more manageable, comfortable, easy, and less hard than
the Conventional Response. Three participants commented the
Conventional Response was easier, however, the accuracy and

precision of the Integrated Response of two of those three have
improved over the Conventional Response. The remaining of
the three participants who gave negative feedback had higher
precision and slightly lower accuracy (Conventional: 0.637
m, Integrated: 0.647 m) in the Integrated Response condition.
Some notable comments were, "The ball hitting (in Integrated
Response condition) is more realistic (than the Conventional
Response)" and "If there is gravity, this model (Integrated
Response) can be used for a baseball game".

Discussion
Our collision method has been shown to have better accuracy,
precision and subjective performance score than the conven-
tional baseline. In particular, the improvement in precision
(30.26 %) was greater than the improvement in accuracy (8.77
%), because our model focused on the process by which the
variance of the direction perception itself is reduced by the
user’s MLE, not an error problem between a particular ground
truth direction vector and the user’s perceived direction vector.

LIMITATIONS AND CONCLUSION
This study proposed a novel collision technique to improve
the directional accuracy and precision of virtual collision re-
sponses in VR. It identified the cues that allow the user to
estimate the direction of a virtual collision. After construct-
ing mathematical models for the variances of the direction
estimates from each cue, this study inferred the user’s final
estimate of the collision direction based on cue integration the-
ory. In a commercial physics engine, by setting the collision
response direction equal to the inferred collision direction,
the accuracy and precision of the virtual collision could be
improved by 8.77 % and 30.26 %, respectively.

The proposed collision technique has the advantage that it does
not require any additional hardware, is simple to calculate, and
can be directly applied to existing systems, but it also has some
limitations. First, this study was performed assuming a virtual
avatar of a user with a low degree of freedom, such as a plate
attached to a hand. This means that it is not known whether the
cue-integration collision technique can be applied to the high
degree of freedom of body skeletons measured from today’s
advanced computer vision technologies. We envision that for
such a high degree of freedom user avatars, the number of free
parameters in the perceptual model will increase exponentially,
and therefore data-driven machine learning will need to be
applied, rather than a simple calibration as in Study 1.

Second, this study does not guarantee whether the collision
technique proposed in this study will still work if simple haptic
methods, such as vibrotactile actuators [10] or electric muscle
activation [37, 38], are also applied to the user. Above all,
we do not know how the additional sensory signals from such
devices affect the user’s perception of virtual collisions. From
simple experiments, the effects of such devices on the user’s
collision accuracy, precision, and even sense of agency [31],
should be verified. In the process, we expect that the model
presented by this study could provide useful insights.
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