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Abstract: Newly introduced vehicles come with various added functions, each time utilizing data
from different sensors. One prominent related function is autonomous driving, which is performed
in cooperation with multiple sensors. These sensors mainly include image sensors, depth sensors,
and infrared detection technology for nighttime use, and they mostly generate data based on image
processing methods. In this paper, we propose a model that utilizes a parallel transformer design to
gradually reduce the size of input data in a manner similar to a stairway, allowing for the effective use
of such data and efficient learning. In contrast to the conventional DETR, this model demonstrates its
capability to be trained effectively with smaller datasets and achieves rapid convergence. When it
comes to classification, it notably diminishes computational demands, scaling down by approximately
6.75 times in comparison to ViT-Base, all the while maintaining an accuracy margin of within ±3%.
Additionally, even in cases where sensor positions may exhibit slight misalignment due to variations
in data input for object detection, it manages to yield consistent results, unfazed by the differences
in the field of view taken into consideration. The proposed model is named Stairwave and is
characterized by a parallel structure that retains a staircase-like form.

Keywords: autonomous driving; infrared image; transformer; object detection; classification

1. Introduction

The field of autonomous driving has evolved from being a highly challenging domain
to becoming an aspect of every day, now commonly integrated as basic assistance functions
in commercially available vehicles. The autonomous driving sector, built on rapidly
advancing artificial intelligence and sensor technologies, continues to experience sustained
growth [1–3]. The most crucial aspect among the fields utilized in autonomous driving
technology is artificial intelligence, which can rapidly assess and provide solutions to issues
that arise during driving. While a wide range of events can occur during driving, generally,
vision-related technologies, which function much like human eyes for assessment, are
the most critical [4,5]. They need to learn quickly and provide rapid responses. Training
artificial intelligence to make judgments through images requires a substantial amount of
data and a significant amount of time. If the performance of such functions is excellent, it
often demands high-performance hardware, and the issue of resource-intensive costs has
been a long-standing concern [6–8].

Just as depicted, autonomous driving, which used to rely on numerous sensors and
data for performance, was challenging to implement in small-scale systems. However, over
time, with improvements in hardware performance and streamlining, it is now being em-
ployed across diverse platforms [3,9,10]. One of the prominent examples is the autonomous
driving algorithm used by Tesla in the United States [11]. In the design of this algorithm, it is
explained that it relies solely on camera input data for perception and autonomous driving,
just as a person would assess situations during regular driving with their eyes. Vehicles are
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not constrained by size when it comes to equipping high-performance hardware. However,
in situations with no lighting, such as at night, the accuracy significantly diminishes, and
there are limitations in achieving a high level of autonomous driving [12,13]. One of the
most readily available small autonomous vehicles is the robotic vacuum cleaner [14–16].
Robotic vacuum cleaners utilize LiDAR sensors to collect data in confined, small-scale
environments, navigating obstacles through distance detection using infrared technology
and collision recognition with bumpers. In contrast, robots that provide services, such as
serving robots that can potentially harm people, need to proactively avoid critical situations
and be capable of quickly adapting to various circumstances. However, conventional
learning methods such as object recognition and classification aim to enhance accuracy by
training on extensive datasets, enabling the recognition of diverse environmental elements
within images and reducing computational losses [17–19]. Various attempts are under way
to address these normal issues in the introduction of autonomous driving. There have been
studies proposing Fear-Neuro-Inspired based reinforcement learning frameworks to induce
defensive responses regarding threats or dangers, aiming to address crucial safety issues
in driving [20]. Additionally, there have been proposals for a robust decision-making ap-
proach aimed at maintaining a single decision rather than continuously changing intentions
in the flow of traffic [21].

New models are constantly being introduced in the field of artificial intelligence to
optimize and enhance performance, with transformer and multi-modal being the predomi-
nant keywords recently observed in the AI domain [22,23]. The adoption of the transformer
architecture has moved beyond the traditional convolution structure, introducing a new
form of deep learning for both training and inference. This structure was primarily used in
NLP (Natural Language Processing) previously. Since the introduction of the transformer
model, efforts have been made to utilize the characteristics of this structure to integrate
the meaning of multi-modal, enabling the generation of meaningful inference results by
utilizing a variety of data in conjunction with images [24–26]. However, achieving high
performance demands a significant amount of data, and the drawback is the lengthy
training time required until it can infer the correct answer. Vehicles that require human
intervention should be produced with a focus on safety and stability, necessitating strong
AI-driven autonomous driving capabilities [27–30]. However, unmanned vehicles designed
for various environments require a need for quick development and easy adoption.

In this paper, we propose a Stairwave Transformer model structure designed in
parallel to reduce the input image size used in operations, similar to a stair-like form,
enabling training with multi-sensor data collected at the same time. To efficiently apply
the classification and object detection functions, while these two functions have different
model structures, the mechanisms related to the implementation were designed in the same
way. For classification, there is no separate backbone. Instead, it goes through three stages
of reducing the image patch size and a total of eight transformer encoders. It achieves
an accuracy within ±3% compared to DEtection TRansformer (DETR) while requiring
roughly 6.75 times fewer computations. For object detection, ResNet50 was used as the
backbone. The process involves downsizing the image patches twice and performing a total
of 6 transformer encoders and decoders. This allows for faster initial learning convergence
compared to DETR and effective training with smaller datasets.

2. Related Works

To design a proposed method, we examined the characteristics of representative
models for each inference function, namely Vision Transformer (ViT) and DEtection TRans-
former (DETR), as well as the foundational model structure, transformer. Furthermore, we
confirmed the efficiency related to the utilization of additional data.
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2.1. Transformer [22]

Transformer is a machine learning model that was first introduced in a paper by
Google in 2017, and it revolutionized the predominant paradigm that primarily used the
structure of conventional models based on CNN, which had been in use for a long time [22].

Figure 1 shows a simplified operation of the transformer. It was initially designed
to perform NLP tasks, but this architecture has become a foundational model that can be
extended to various fields.

Figure 1. Transformer internal model structure.

Transformer utilizes the tokenizer approach commonly used in NLP to patchify var-
ious data for training. Instead of the conventional Recurrent Neural Network (RNN), it
is based on the self-attention mechanism. By employing the transformer approach, the
sequential processing method, which is a limitation of RNN, is parallelized. Furthermore, it
employs multi-head attention to process input information from various perspectives and
combines the extracted information. The transformer method processes elements within
the input training data simultaneously, resulting in faster processing speeds compared to
the RNN. It performs better with a larger amount of training data. Additionally, it can
learn the correlations between similar data more clearly through the attention mechanism.
However, the computational load increases depending on the length of the data required
for processing.

The CNN and transformer employ different approaches for learning and inference,
each with its own set of advantages and disadvantages [22,31]. In the case of the CNN,
the use of convolution filters allows it to effectively capture the influence of surrounding
information, which can have an impact on the results. In contrast, transformer utilizes
the complete information of the data it processes, enabling it to obtain information from
distant data points. From the perspective of ’inductive bias’, a value that is reflected to
achieve better performance when new data are introduced in continuous learning, these
approaches reflect different scales of influence.

2.2. Vision Transformer (ViT) [32]

While the original transformer model was primarily utilized in the field of NLP, the
model designed to extend this to the vision domain is known as the ViT [32].

Figure 2 shows the basic structure of the ViT. The ViT leverages the advantages of
the transformer’s inductive bias, which results in the model’s versatility, to capture and
process interacting elements in global image information. In the case of transformers used
in NLP, a patchify process is performed to break down sentence structures into patches and
use them as input. To adapt this to images, appropriately sized patches are defined and
used as input to the transformer encoder. This structure features only an encoder without
a decoder.

Figure 2. ViT model structure.
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From an image learning perspective, the conventional CNN approach has been suitable
for resource-constrained environments due to its compact model size and efficient memory
utilization. Models utilizing CNN techniques still demonstrate fast processing speeds and
decent accuracy on lightweight platforms. In contrast, ViTs have the drawback of larger
model sizes and high memory usage. Due to the nature of transformers, they require
large datasets to achieve optimal performance. ViTs, for instance, have been trained on
datasets containing over 300 million images with more than 37.5 billion labeled data points.
Currently, they may not seem suitable for resource-constrained, small-scale platforms.
Nevertheless, to harness the advantages of transformer-based models, such as improved
utilization of diverse data and overcoming the limitations of the CNN, it is necessary to
design and enhance models using transformers.

2.3. DEtection TRansformer (DETR) [33]

The ViT fundamentally performs classification tasks, and a model that applies this to
object detection is called DETR [33].

Figure 3 provides a brief overview of the DETR’s structure. While it employs the
structure of transformer, it strengthens image features by using a CNN-based resnet as its
backbone. The output from resnet, along with the positional information of the divided
patches, is used as input for the transformer encoder. The output obtained through resnet
is similar to the result of transforming the image into 16x16-sized patches, and no separate
patch processing is required. In DETR, positional embedding is added to the query after
data input to the transformer encoder, without including it when patches are input. Unlike
conventional object detection, DETR does not output values sequentially but produces
results all at once.

Figure 3. DETR model structure.

DETR has the advantage of recognizing large objects within an image effectively, as
it utilizes the entire image’s information, in contrast to models designed with a CNN.
Moreover, when trained with an end-to-end model structure, it demonstrates performance
similar to the Faster R-CNN. However, due to the utilization of the transformer structure, it
requires longer training times, and its inference performance for small objects is suboptimal.
Research aimed at addressing the shortcomings arising from the use of the transformer
architecture continues to be ongoing through various methods [34–36].

2.4. Information Change Due to the Use of Additional Data

When additional data are used for training and inference with image data, it allows
for obtaining a greater amount of information.

H = −
255

∑
t=0

pi log2 pi (1)

Equation (1) represents the value of information or the entropy calculation corresponding
to a single pixel in the local context of an image [37,38]. In Equation (1), ‘pi’ denotes the
probability values concerning the bray scale obtained from the normalized histogram of
the image.
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Figure 4 is the image used to examine the value of information of Equation (1). Ac-
cording to the paper, when calculating the entropy of the original image, the value of
information is lower for infrared images compared to RGB because of the fewer chan-
nels [37]. However, when combined, it produces a higher value. A higher value indicates
that it contains more information, and typically, color data contains more features. The
formula’s outcome demonstrates that merely by utilizing additional data alongside the
existing data, the amount of information obtained increases.

Figure 4. RGB and IR sample images for assessing image information.

3. Design

This paper presents a model designed with two structures that perform classification
and object detection based on a mechanism of gradually reducing input data size. It
also proposes methods for utilizing additional data in object detection. In the case of
classification, the transformer’s structure involves a significant computational load and
lengthy training times, which led to its use in the fundamental model design for image
learning. The mechanism employed in classification was later extended to object detection,
and the model was designed to be applied in various environments by utilizing additional
sensor image data.

Figure 5 shows the model structure for the classification function using the proposed
design approach. This structure depicts the entire transformer model augmented with
the process of convolution and can be characterized by two main features. It can be
divided into the part that reinforces key features through convolution before executing the
transformer encoder and the part that distributes them based on input data size, performing
the transformer encoder in parallel. In the conventional ViT structure, the original image
size is transformed only to the input size. However, in the proposed method, the grid
down convolution block (GDC block) is applied to further reduce the image size while
making the features within the image more distinct. The structure consists of two 3 × 3
convolution layers for generating general features, two convolution layers for reducing the
input size for computation, and two linear convolution layers. The most computationally
intensive part in the basic transformer structure is ‘patchify’, which divides the image into
predefined patch sizes. In the ViT, after patchify, the transformer encoder is performed
with the same input size. For the base model, this operation is performed a minimum of
12 times, consuming a significant amount of resources. The proposed method involves
performing the GDC block a total of three times, resulting in four different input data sizes,
each of which is processed twice by the transformer encoder. In this case, the total number
of transformer encoder executions is reduced from 12 to 8, and the input images used for
patchify are in four different sizes, significantly reducing resource usage. Furthermore, due
to the smaller input size for the transformer, it enables efficient and rapid learning and
inference based on various output data.
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Figure 5. Proposed classification model structure.

Nbase =
12

∑
k=1

HW/P2 (2)

Nproposal =
4

∑
k=1

2(
HW
2k /P2) (3)

Equations (2) and (3) calculate the vectors, in other words, the number of patches used
in the execution of the encoder layer for both the ViT and the proposed method. H and
W represent the width and height of the input data, while P represents the patch size.
Technically, the computation should reduce by half with each iteration. However, the input
data’s size is larger, specifically 256 × 256, compared to ViT-Base, which has an input size
of 224 × 224. Utilizing a slightly larger resolution of the input data is aimed at preventing
feature loss in the final GDC block, where the data become too small. The data used for
transformer encoder execution and the results of size are based on the four blocks. The
data output in different sizes is passed through the down scaling convolution layer to be
resized to the same size as the smallest patch. Then, a residual connection is applied, and a
multi-layer perceptron is used for classification based on the number of classes to present
the results.

Figure 6 shows the structure of the object detection function model designed using the
approach applied in the previously described classification. The input data utilize resnet
as the backbone to highlight features within the image. The input data that have passed
through the backbone results in 2048 channels with a size of 16 × 16, which is consistent
with the original DETR. To use the output as input data for the transformer, an input
modeling process is performed, and additionally, patchify is executed in two different sizes.
When reducing the patch size, reducing it to 1 × 1 or a similarly small size completely
eliminates object feature information. Therefore, the patch size is reduced to 8 × 8 and
4 × 4. The proposed method differs in terms of transformer layer execution, as input data
of each size do not pass through a single transformer layer until the end. Instead, input
data of different sizes pass through separate transformer layers. The transformer layer is
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executed a total of six times, with two executions for each size. The results obtained after
passing through the layers then pass through a residual connection layer and undergo
object recognition and classification inference processes. The model designed in this way
exhibits a parallel structure, resembling a staircase with steps gradually, ascending in a
sequential process.

Figure 6. Proposed object detection model structure.

Figure 7 shows the location where data are modified to utilize additional data in the
transformer layer for the preceding object detection process. During the execution of the
transformer encoder, values corresponding to query, key, and value are utilized. Additional
data, transformed to match the format of the query, is added to the key’s values, along with
positional embedding values that account for the position of each patch. To generate and
incorporate the result into the value of the transformer encoder, the answer value from the
query is utilized, along with the key values as hints to find answers, including additional
data. In the decoder, the final output is produced using the value.

Figure 7. Approach for incorporating additional image data into object detection model.
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AI = AdditionalImage, K̂ = K⊕ AI, Attention(Q, K̂, V) = so f tmax(
QK̂t
√

dhead
)V (4)

Equation (4) shows the addition of extra data to the attention mechanism of the encoder. K
added the value of input obtained from resnet processing and positional embeddings to
the ‘Q’. However, ‘K hat’ represents the value obtained by embedding additional image
data within the 3 channels during data input.

4. Results

To verify the performance of the model proposed in this paper, we conducted tests
and examined the results for each function.

Tables 1 and 2 show the datasets and performance specifications. The Place365 dataset
was used for classification, and the BDD-100K and FLIR datasets were employed for
object detection [19,39,40]. In addition, we utilized custom indoor datasets for testing.
The Place365 dataset includes 1,803,460 images, each with label data for 365 different
classes. The BDD-100K dataset comprises approximately 3,300,000 Bbox Label data for
79,863 images spanning 8 classes. The FLIR dataset consists of some continuous video
data, capturing 3748 images with both RGB and thermal views from the same perspective.
It is categorized into 10 classes and includes 84,786 bounding box Label data. Among
custom indoor datasets, the one used for classification comprises 9338 images with 8
distinct classes. The dataset used for object detection encompasses 10,195 images with
33,850 bounding box Label data into 12 classes. The computational specifications used in
the experiments include an Intel Xeon Silver 4210R CPU and an RTX A6000 48 GB GPU,
along with 192 GB of RAM. The operating system used is Ubuntu 18.04 LTS 64-bit. The
programming languages employed are python 3.8.10 and pyTorch 1.12.0.

Table 1. Specifications.

Usage Dataset Images Classes Labels (Bbox)

Classification Place365 1,803,460 365 -
Custom 9338 8 -

Object detection
BDD-100K 79,863 8 3,300,000

FLIR 3748 10 84,768
Custom 10,195 12 33,850

Table 2. System specifications.

Specification

CPU Intel Xeon Silver 4210R
GPU RTX A6000 48 GB GPU
RAM 192 GB

OS Ubuntu 18.04 LTS 64-bit
Language Python 3.8.10

Figure 8 shows sample data from the five datasets used. The BDD-100K and FLIR
datasets consist of image data acquired from the perspective of vehicle operation.
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Figure 8. Sample images from the dataset used.

Table 3 shows a comparison of the structure and depth between the existing and
designed models. To achieve model lightweighting for classification tasks in the proposed
approach, the number of channels was reduced by half or less, and the depth of the
transformer encoder was reduced by 4 compared to ViT-Base. As a result, the number of
parameters could be reduced by approximately 6.75 times. After the introduction of the
ViT, models such as ConViT and Swin Transformer emerged, based on ViT architecture.
However, these were not designed with a focus on lightweight structures to increase
accuracy. These models also exhibit parameter counts exceeding 80 million [41,42]. The
object detection model, applying the proposed approach, reduces the patch size by 2 times
for each operation to facilitate faster training. As the data are downsampled n times, the
depth of the transformer increases by a factor of 2. This downsizing, although it slightly
increases the number of parameters, is undertaken to achieve rapid training convergence.

Table 3. Comparison of features between the proposed model and the base model.

Model Width
(Channels) Depth Input Size Patch Size Parameters

Previous

ViT
(Classification) 768 Enc.12 224 10 86 M

ConViT
(Classification) 768 GPSA.10, SA.2 224 16 86 M

Swin
(Classification) 1024 SWTB.

(2/2/18/2) 224 4 88 M

DETR
(Detection) 2048 Enc.6, Dec.6 max.800 × 1333 16 41.50 M

Proposal Classification 300 Enc.8 256 10 12.58 M
Detection 2048 n (Enc.2, Dec.2) 256 16/8/4 52.98 M

Table 4 shows the results of lightweighting the ViT using the proposed method.
For the ViT, after training up to 50 epochs, the accuracy was 26.61%. In contrast, the
proposed method achieved an accuracy of 33.40% as early as 19 epochs. On the custom
dataset, both models achieved over 95% accuracy after the same 50 epochs, with an error of
approximately ±3%. The proposed model exhibited a training speed at least three times
faster.
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Table 4. Performance comparison of classification functionality.

Dataset Model Epoch Accuracy Batch Size
Learning Time
(Mean of Step

per s)

Custom dataset Proposal 50 96.25 20 0.037
ViT-Base/16 50 98.39 20 0.2

Place365 dataset Proposal 19 33.40 360 0.328
ViT-Base/16 50 26.61 360 0.768

Figure 9 shows the loss graphs during the training of DETR and the proposed method.
For DETR, there is a tendency for rapid learning from a certain epoch, but it takes a
considerable amount of time to converge. The training speed for both DETR and the
proposed method is approximately 7 s per step, and the convergence speed for recognition
is also fast. This is reflected in the training results and is confirmed. Although the proposed
method has more parameters for computation, it gains an advantage in training speed due
to the use of smaller input sizes.

Figure 9. Loss rate for each object detection model.

Figure 10 shows the inference results of object detection designed through DETR
and the proposed method at the same epoch. As evident from the results, the training
convergence speed of the proposed method is fast. This is reflected in the inference results,
as it begins detecting objects in the similar positions not long after the first epoch. Even
up to 90 epochs, DETR did not appear to learn much about the input data. While it
exhibited some level of recognition, the model utilizing our proposed method consistently
demonstrated significantly higher accuracy at the same 100 epochs. In the case of training
on a custom dataset, even with a small dataset of fewer than 10,000 images, we observed
promising detection results starting from epoch 189. However, in the case of DETR, even
after training for 500 epochs, it fails to detect objects.

Figure 10. Results across training epochs.
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In Figure 11, Figure 11a represents RGB images and infrared images captured at the
same time, while Figure 11b illustrates the results of training with single RGB image data
using the proposed method and the results of training with both RGB image data and
infrared image data. In Figure 11a, for objects that are not visible in the original RGB images
due to direct sunlight, their shapes become visible when captured with an infrared camera.
The proposed model, designed to utilize such data additionally, can recognize objects on
the same RGB images as in Figure 11a, as seen in the results of Figure 11b. Furthermore,
when additional similar images are used, it exhibits robust recognition results, even in the
presence of lighting elements that may interfere with recognition, outperforming the model
trained solely on RGB images. Furthermore, the training speed remains unaffected by the
addition of extra information about the images, as these data are incorporated into the key
in a manner that does not slow down the computation speed, except when loading the data
for training.

Figure 11. Results of single use of RGB images and combined learning of RGB and additional
sensor data. (a) original images, (b) processed images.

Figure 12 shows the performance metrics of the executed dataset and dataset-specific
accuracy for each task. Under the dataset name, the number of images in the dataset
is indicated. In the case of classification, the metrics are consistent with the previous
explanation. However, examining the results of object detection, it is evident that utilizing
images with additional channels performs better than using only RGB data. For the BDD-
100K dataset, due to the need to detect small object sizes, it exhibits results in tracking
similar positions, but the mAP metric is measured relatively low. For the custom dataset
labeled for object recognition, the DETR model did not recognize objects.
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Figure 12. Performance results graph of executed models for each dataset.

5. Conclusions

In this paper, we propose an effective model structure for rapidly introducing the
utilization of artificial intelligence functions through multi-sensor inputs in small-scale
systems. This technology is expanding into various fields of autonomous driving. We
employ the transformer architecture, which has gained prominence recently. To address
the drawbacks of the transformer, such as training speed and high computational load,
we employ a parallel layer arrangement passing through different transformer layers for
varying data sizes while gradually reducing the input image data size. We also reduce
the number of transformer layers compared to the conventional approach. As a result,
in the classification function, our proposed ViT exhibits a computational load that is ap-
proximately 6.75 times less than that of the basic ViT. It maintains similar or improved
accuracy, and its training speed is at least three times faster, making it suitable for straight-
forward training and small-scale system applications. In the object detection function, our
proposed model’s computational load is comparable to that of DETR, but it offers rapid
training and subsequent inference accuracy convergence. Notably, no separate pre-training
is required to achieve these results. It does not unconditionally demand extensive data
and can effectively train on small-scale datasets. If you want to further improve object
recognition accuracy, you can utilize larger-scale datasets. Our modified model, taking
advantage of the characteristics of the transformer architecture and using additional sensor
data, demonstrates improved object detection results even in images with varying lighting
conditions, interference, or nighttime scenarios when compared to the results of inference
using only RGB data. This shows the model’s adaptability to diverse environmental data.

The used backbone, resnet, accounts for a substantial portion, approximately half, of
the overall computational load. Therefore, it is possible to improve processing speed by
either designing an effective backbone for obtaining features from input data or utilizing a
lightweight alternative. In the case of additional data like infrared images, constructing
separate layers for feature extraction and processing to enhance results using this sensor in
low-light conditions could lead to accuracy improvements.

Author Contributions: Conceptualization, writing—original draft preparation, software, visualiza-
tion, D.C.; project administration, funding acquisition, C.-e.L.; methodology, J.B.; formal analysis,
S.D.; data curation, S.J.; investigation, K.-y.K.; validation, supervision, writing—review and editing,
Y.-g.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by Korea Research Institute for Defense Technology
planning and advancement (KRIT) grant funded by Korea government DAPA (Defense Acquisition
Program Administration) (No. KRIT-CT-22-006-002, Development of the situation/environment
recognition technology for micro-swarm robot).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Machines 2023, 11, 1068 13 of 14

References
1. Agrawal, A.; Gans, J.; Goldfarb, A. What to expect from artificial intelligence. MIT Sloan Manag. Rev. 2017, 58, 23.
2. Muhammad, K.; Ullah, A.; Lloret, J.; Ser, J.D.; de Albuquerque, V.H.C. Deep Learning for Safe Autonomous Driving: Current

Challenges and Future Directions. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4316–4336. [CrossRef]
3. Grigorescu, S.M.; Trasnea, B.; Cocias, T.T.; Macesanu, G. A Survey of Deep Learning Techniques for Autonomous Driving. J. Field

Robot. 2020, 37, 362–386. [CrossRef]
4. Sidhwani, S.; Malkotiya, M.; Korde, N.; Unde, S.; Salunke, M. Autonomous Driving: Using a Vision based Approach. Int. J.

Comput. Appl. 2014, 92, 20–24. [CrossRef]
5. Kanchana, B.; Peiris, R.; Perera, D.; Jayasinghe, D.; Kasthurirathna, D. Computer Vision for Autonomous Driving. In Proceedings

of the 2021 3rd International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 9–11 December 2021;
pp. 175–180. [CrossRef]

6. García-Martín, E.; Rodrigues, C.F.; Riley, G.; Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib.
Comput. 2019, 134, 75–88. [CrossRef]

7. Desislavov, R.; Martínez-Plumed, F.; Hernández-Orallo, J. Trends in AI inference energy consumption: Beyond the performance-
vs-parameter laws of deep learning. Sustain. Comput. Inform. Syst. 2023, 38, 100857. [CrossRef]

8. Potok, T.E.; Schuman, C.; Young, S.; Patton, R.; Spedalieri, F.; Liu, J.; Yao, K.T.; Rose, G.; Chakma, G. A study of complex deep
learning networks on high-performance, neuromorphic, and quantum computers. ACM J. Emerg. Technol. Comput. Syst. (JETC)
2018, 14, 1–21. [CrossRef]

9. Chishiro, H.; Suito, K.; Ito, T.; Maeda, S.; Azumi, T.; Funaoka, K.; Kato, S. Towards heterogeneous computing platforms for
autonomous driving. In Proceedings of the 2019 IEEE International Conference on Embedded Software and Systems (ICESS), Las
Vegas, NV, USA, 2–3 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8.

10. Brown, N.E.; Rojas, J.F.; Goberville, N.A.; Alzubi, H.; AlRousan, Q.; Wang, C.; Huff, S.; Rios-Torres, J.; Ekti, A.R.; LaClair, T.J.; et al.
Development of an energy efficient and cost effective autonomous vehicle research platform. Sensors 2022, 22, 5999. [CrossRef]

11. Tesla. Autopilot. Available online: https://www.tesla.com/autopilot (accessed on 10 September 2023).
12. Berecz, C.E.; Kiss, G. Dangers in autonomous vehicles. In Proceedings of the 2018 IEEE 18th International Symposium on

Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 000263–000268.

13. Coicheci, S.; Filip, I. Self-driving vehicles: Current status of development and technical challenges to overcome. In Proceedings of
the 2020 IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania,
21–23 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 000255–000260.

14. Hendriks, B.; Meerbeek, B.; Boess, S.; Pauws, S.; Sonneveld, M. Robot vacuum cleaner personality and behavior. Int. J. Soc. Robot.
2011, 3, 187–195. [CrossRef]

15. Kang, M.C.; Kim, K.S.; Noh, D.K.; Han, J.W.; Ko, S.J. A robust obstacle detection method for robotic vacuum cleaners. IEEE Trans.
Consum. Electron. 2014, 60, 587–595. [CrossRef]

16. Asafa, T.; Afonja, T.; Olaniyan, E.; Alade, H. Development of a vacuum cleaner robot. Alex. Eng. J. 2018, 57, 2911–2920. [CrossRef]
17. Feng, D.; Haase-Schütz, C.; Rosenbaum, L.; Hertlein, H.; Glaeser, C.; Timm, F.; Wiesbeck, W.; Dietmayer, K. Deep multi-modal

object detection and semantic segmentation for autonomous driving: Datasets, methods, and challenges. IEEE Trans. Intell.
Transp. Syst. 2020, 22, 1341–1360. [CrossRef]

18. Rashed, H.; Mohamed, E.; Sistu, G.; Kumar, V.R.; Eising, C.; El-Sallab, A.; Yogamani, S. Generalized object detection on fisheye
cameras for autonomous driving: Dataset, representations and baseline. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 2272–2280.

19. Yu, F.; Xian, W.; Chen, Y.; Liu, F.; Liao, M.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Video Database with Scalable
Annotation Tooling. arXiv 2018, arXiv:1805.04687.

20. He, X.; Wu, J.; Huang, Z.; Hu, Z.; Wang, J.; Sangiovanni-Vincentelli, A.; Lv, C. Fear-Neuro-Inspired Reinforcement Learning for
Safe Autonomous Driving. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 1–13. [CrossRef]

21. He, X.; Lou, B.; Yang, H.; Lv, C. Robust Decision Making for Autonomous Vehicles at Highway On-Ramps: A Constrained
Adversarial Reinforcement Learning Approach. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4103–4113. [CrossRef]

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017.

23. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal Deep Learning. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, Washington, DC, USA, 28 June–2 July 2011; Omnipress: Madison,
WI, USA, 2011; pp. 689–696.

24. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning
Transferable Visual Models from Natural Language Supervision. In Proceedings of the 38th International Conference on Machine
Learning, Virtual, 18–24 July 2021.

25. Xu, P.; Zhu, X.; Clifton, D.A. Multimodal Learning with Transformers: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023,
45, 12113–12132. [CrossRef] [PubMed]

http://doi.org/10.1109/TITS.2020.3032227
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.5120/16068-5186
http://dx.doi.org/10.1109/ICAC54203.2021.9671099
http://dx.doi.org/10.1016/j.jpdc.2019.07.007
http://dx.doi.org/10.1016/j.suscom.2023.100857
http://dx.doi.org/10.1145/3178454
http://dx.doi.org/10.3390/s22165999
https://www.tesla.com/autopilot
http://dx.doi.org/10.1007/s12369-010-0084-5
http://dx.doi.org/10.1109/TCE.2014.7027291
http://dx.doi.org/10.1016/j.aej.2018.07.005
http://dx.doi.org/10.1109/TITS.2020.2972974
http://dx.doi.org/10.1109/TPAMI.2023.3322426
http://dx.doi.org/10.1109/TITS.2022.3229518
http://dx.doi.org/10.1109/TPAMI.2023.3275156
http://www.ncbi.nlm.nih.gov/pubmed/37167049


Machines 2023, 11, 1068 14 of 14

26. Rahman, W.; Hasan, M.K.; Lee, S.; Zadeh, A.; Mao, C.; Morency, L.P.; Hoque, E. Integrating multimodal information in large
pretrained transformers. Proc. Conf. Assoc. Comput. Linguist. Meet. 2020, 2020, 2359–2369. [PubMed]

27. Fu, Y.; Li, C.; Yu, F.R.; Luan, T.H.; Zhang, Y. A Survey of Driving Safety with Sensing, Vehicular Communications, and Artificial
Intelligence-Based Collision Avoidance. IEEE Trans. Intell. Transp. Syst. 2022, 23, 6142–6163. [CrossRef]

28. Abbasi, S.; Rahmani, A.M. Artificial intelligence and software modeling approaches in autonomous vehicles for safety manage-
ment: A systematic review. Information 2023, 14, 555. [CrossRef]

29. Fernandez-Llorca, D.; Gómez, E. Trustworthy artificial intelligence requirements in the autonomous driving domain. Computer
2023, 56, 29–39. [CrossRef]

30. Parekh, D.; Poddar, N.; Rajpurkar, A.; Chahal, M.; Kumar, N.; Joshi, G.P.; Cho, W. A review on autonomous vehicles: Progress,
methods and challenges. Electronics 2022, 11, 2162. [CrossRef]

31. Arkin, E.; Yadikar, N.; Xu, X.; Aysa, A.; Ubul, K. A survey: Object detection methods from CNN to transformer. Multimed. Tools
Appl. 2023, 82, 21353–21383. [CrossRef]

32. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

33. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.

34. Li, Y.; Mao, H.; Girshick, R.; He, K. Exploring plain vision transformer backbones for object detection. In Proceedings of the
European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 280–296.

35. Wang, Y.; Zhang, X.; Yang, T.; Sun, J. Anchor detr: Query design for transformer-based detector. In Proceedings of the AAAI
Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36, pp. 2567–2575.

36. Zhang, Z.; Lu, X.; Cao, G.; Yang, Y.; Jiao, L.; Liu, F. ViT-YOLO: Transformer-based YOLO for object detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Virtually, 11–17 October 2021; pp. 2799–2808.

37. Choi, D.; Do, S.; Lee, C.-e. A Study on the Training Methodology of Combining Infrared Image Data for Improving Place
Classification Accuracy of Military Robots. J. Korea Robot. Soc. 2023, 18, 293–298. [CrossRef]

38. Dey, S. Hands-On Image Processing with Python; O’Reilly Media: Sebastopol, CA, USA, 2018.
39. Zhou, B.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million Image Database for Scene Recognition. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 40, 1452–1464. [CrossRef]
40. Teledyne FLIR. FREE Teledyne FLIR Thermal Dataset for Algorithm Training. Available online: https://www.flir.com/oem/

adas/adas-dataset-form/ (accessed on 5 August 2023).
41. d’Ascoli, S.; Touvron, H.; Leavitt, M.L.; Morcos, A.S.; Biroli, G.; Sagun, L. Convit: Improving vision transformers with soft

convolutional inductive biases. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July
2021; pp. 2286–2296.

42. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Virtually, 11–17
October 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/33782629
http://dx.doi.org/10.1109/TITS.2021.3083927
http://dx.doi.org/10.3390/info14100555
http://dx.doi.org/10.1109/MC.2022.3212091
http://dx.doi.org/10.3390/electronics11142162
http://dx.doi.org/10.1007/s11042-022-13801-3
http://dx.doi.org/10.7746/jkros.2023.18.3.293
http://dx.doi.org/10.1109/TPAMI.2017.2723009
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/

	Introduction
	Related Works
	Transformer Transformer
	Vision Transformer (ViT) ViT
	DEtection TRansformer (DETR) DETR
	Information Change Due to the Use of Additional Data

	Design
	Results
	Conclusions
	References

