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ABSTRACT
We present a novel simulation model of point-and-click behaviour
that is applicable both when a target is stationary or moving. To
enable more realistic simulation than existing models, the model
proposed in this study takes into account key features of the user
and the external environment, such as intermittent motor control,
click decision-making, visual perception, upper limb kinematics
and the effect of input device. The simulated user’s point-and-click
behaviour is formulated as a Markov decision process (MDP), and
the user’s policy of action is optimised through deep reinforcement
learning. As a result, our model successfully and accurately repro-
duced the trial completion time, distribution of click endpoints,
and cursor trajectories of real users. Through an ablation study,
we showed how the simulation results change when the model’s
sub-modules are individually removed. The implemented model
and dataset are publicly available.

CCS CONCEPTS
• Human-centered computing→ HCI theory, concepts and
models.
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1 INTRODUCTION
In human–computer interaction (HCI), quantitative models of user
performance can predict how the user performance changes when
the interface design or the user characteristics change. Based on the
model’s predictions, we can mathematically and computationally
explore the design space of an interface to obtain the optimal design
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that maximises user performance, which can drastically reduce the
time and cost of developing user interfaces. For example, Fitts’
law [58]can predict the time it takes for a user to acquire a target
with respect to its size and distance given to the user. From this,
in examples such as graphical user interfaces [6, 50], web pages
[61, 62] or typing interfaces [34, 52, 70], layouts in which targets
are placed on the screen can be optimised or personalised without
trial and error.

Existing user performance models in HCI have mainly aimed at
predicting aggregated metrics related to user performance, such as
trial completion time [2, 8, 58] and error rate [9, 27, 43, 67]. How-
ever, such models do not predict how interactions will unfold over
time. In response to the limitations of existing models, interest in
simulation models [16, 31, 32, 48, 51] has recently increased among
HCI researchers. Unlike traditional models, simulation models aim
to predict and simulate the progress of interactions in continuous
time 1. This is achieved by modelling the cognitive or physical
entities that make up the interaction system, each entity’s activities
and the organisation between them, as close to reality as possible
[18]. For example, to build a simulation model of the user’s button
press behaviour, Oulasvirta et al. [51] combined individual models
such as the user’s finger flesh, bones, muscles, button springs and
dampers, and the user’s perceptual control and Bayesian learning
process into a single dynamic system. From this, they successfully
simulated the process of a user pressing a button and identified the
unknown effect of button design on user performance.

This study presents a novel simulation model that can predict
the behaviour and performance of users performing point-and-click
tasks. In a point-and-click task, the cursor moves to a target using
an input device such as a computer mouse and then finally clicks the
button on the input device to acquire a target. Point-and-click tasks
are still one of the most important and widely given HCI tasks in
the modern desktop environment [17]. However, there has not yet
been an integrated and realistic point-and-click simulation model.
In particular, existing models [48] do not take into account the key
characteristics of human motor control (i.e., predictive intermittent
control) or did not consider the cognitive process by which users
plan and execute click actions.

The user simulated in ourmodel is implemented as a combination
of five sub-modules (see Figure 1). The visual perception module
takes sensory information about the cursor and target as input,
adds the user’s perceptual noise, and passes the result to the motor
control module. The motor control module implements the user’s
intermittent motor control process with a receding horizon that
outputs the cursor’s motor plan based on the input from the visual
1Although not covered in detail in this paper, Model Human Processor [13], GOMS [30],
and ACT-R [3] were early symbolic models that tried to predict interaction processes
in discontinuous time. Note that this study was inspired by such pioneering studies.
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Figure 1: In this study, we present a realistic simulation model of point-and-click behaviour. The simulated user is imple-
mented as a combination of five sub-modules, each of which is implemented based on existing models of human visual per-
ception, motor control, motor performance, click action, and input device effects. The simulated user can dynamically control
the following two action variables in response to a given point-and-click situation: click decision K and prediction horizon of
motor control Th . The policy of the action is optimised through deep reinforcement learning.

perception module. The process of converting the cursor’s motor
plan into actual cursor movement is performed by themouse module
and the upper limb module. In this process, the acceleration function
of the mouse, rotation of the mouse coordinate system, and motor
noise of the hand movement are considered. The click action module
continuously observes the relative movement between the cursor
and the target and executes a click action at an appropriate timing.
Each module is implemented based on existing models of human
visual perception [60], motor control [11], motor performance [44,
56], click action [53], and input device effects [14, 40]. The model
has 12 free parameters to represent the user’s physical, cognitive,
and motor characteristics (Table 1). Section 3.2 contains a more
detailed description of each module.

The process by which the simulated user performs a point-and-
click action in a given environment can be expressed as a Markov
decision process (MDP), a natural framework for formulating se-
quential decision-making processes. For each j-th decision step,
there are two variables that represent the simulated user’s action
aj (prediction horizon Th and click decision K), and six variables
that represent the environmental states sj that the user perceives
(position and velocity of cursor and target, radius of target and
hand position). As a result of the action at each decision step, the
user receives a reward based on the amount of muscle effort and
the success or failure of the click action. We trained the simulated
user’s policy of action π (sj , aj ) to maximise the expected rewards
through deep reinforcement learning (a.k.a., deep Q-learning) [47].
Unlike traditional point-and-click studies in which the target was
assumed stationary, we trained the simulated user in a more gen-
eral point-and-click task that included both when the target was
stationary and when the target was moving at a constant velocity.

In the evaluation study, the trained model accurately reproduced
real user behaviour and performance in terms of trial completion

time, distribution of click endpoints, and cursor trajectory. In the ab-
lation study, we analysed how the simulation performance changes
when sub-modules of a model are individually removed. In addition,
by conducting a subjective evaluation study, we found that the cur-
sor trajectory that the model simulated was difficult to distinguish
from that of a real user (mean success rate 57.9 %). To facilitate
future research, we released all models and datasets 2.

2 RELATEDWORK
2.1 Simulating Target Tracking Movement
User point-and-click behaviour can be divided into a tracking process
in which the user moves a cursor to a target and a click process in
which the user performs a click action. Among them, the tracking
movement can be simulated in continuous time through control
theoretic models. Muller et al. [48] simulated the process of a user
moving the cursor toward a fixed target assuming that the user
is a traditional controller such as a second order lag or McRuer’s
pilot model [45]. Bachynskyi et al. [5] conducted a similar study
for mid-air pointing movements. Aranovskiy et al. [4] proposed a
switched dynamic model that could simulate the ballistic phase and
tracking phase of point-and-click movement. They formulated the
user’s visual perception as a linear filter, unlike previous models.
Fischer et al. [24] simulated cursor trajectories by assuming that the
user is an optimal controller and modelling the cursor as a simple
spring-damper system. These models simplified users as controllers
with aggregated characteristics in a top-down manner, rather than
dissecting the underlying mechanism of point-and-click behaviour.

Unlike the models above, the Basic Unit of Motor Production
(BUMP) model suggested by Bye et al. [10–12] is a control theoretic
model that incorporates low-level cognitive processes in which the
2http://leebyungjoo.com/point-and-click-simulator
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user performs the tracking movement. This model explains human-
aimed movement as a series of BUMPs; the model considers the
following processes in the simulation: intermittent and predictive
motor control, signal-dependent motor noise, optimal motor plan-
ning, and visual perception of the position and velocity of the target
and cursor. The BUMP model both faithfully reproduces human-
aimed movements and facilitates integration with other models due
to the low-level mechanism it reveals. These strengths mean that
the model proposed in this study utilises the BUMP model as a core
component. Section 3.2 describes the BUMP model in more detail.

2.2 Simulating Click Action
In point-and-click tasks, users must perform a click action to fi-
nally acquire the target. Since click actions are simple movements
performed in a short time, they have not received much attention
from researchers compared to efforts to explain tracking movement
[53]. For example, the effect of the click action has been regarded
as simply adding a constant time to the movement time [35] or has
been regarded as a non-information component that does not affect
the user’s channel capacity [69].

The intermittent click planning (ICP) model proposed by Park
and Lee [53] revealed that users must go through a significant
decision-making process in the process of planning and executing a
click action. According to the model, the user perceives the relative
movement between the cursor and the target to estimate the optimal
timing to activate the click is. Due to the user’s intermittent control
process, the user’s click timing estimation is based on sensory
signals obtained during execution of the latest motor plan just prior
to the click. This model accurately predicts the distribution of click
endpoints and click failure rates. Since the model takes into account
the user’s intermittent control process, it can be easily combined
with the BUMP model. The model proposed in this study utilises
the ICP model as another core component along with the BUMP
model. Section 3.2 describes the ICP model in more detail.

2.3 Optimising Point-and-Click Policy of
Action

Combining the target tracking model and the click action model
does not immediately reproduce realistic point-and-click behaviour,
simply because human behaviour is not determined in a vacuum
but fluidly adapts to the situation of the external environment. Here,
the high-dimensional function that determines the myriad mapping
between the given states of the task environment and the actions
taken by the user is called the user’s policy of action.

To determine the simulated user’s policy of action, it is conve-
nient to formulate the point-and-click process as a Markov decision
process (MDP). Under the MDP formulation, the simulated user
perceives the external environment, performs actions, and receives
rewards for those actions. Then, through deep reinforcement learn-
ing [47], the user’s policy of action can be optimised to maximise
the expected reward. Such optimisation is essential for a realistic
simulation of user behaviour. In fact, many existing theories such
as Bayesian decision theory [38], cue integration theory [21], and
theory of optimal feedback control [63], are based on assumptions
about human optimality and are known to be effective at explaining
actual human behaviour.

Reinforcement learning has been applied in studies of robotics
[20, 22] and human-aimed movements [28, 33]. However, research
on the application of reinforcement learning in the context of HCI
has only recently started. Cheema et al. [16] simulated mid-air
pointing movement by building a dynamic model of the upper
limb. Then, after formulating the movement effort as a reward, they
optimised the action policy that controlled the joint torque through
deep reinforcement learning. They reported an interesting finding
that a more realistic simulation is possible when user fatigue is
considered in the reward. However, their model does not take into
account the user’s intermittent motor control process or click action
process, so it has a different scope of simulation to ours.

Inspired by such previous studies, the model proposed in this
study also formulates the process of the simulated user performing
point-and-click as a MDP and obtains the optimal action policy
through deep reinforcement learning.

2.4 Other Factors Relevant to Point-and-Click
Performance

Besides target tracking and click mechanisms, there are additional
factors to consider for a more realistic point-and-click simulation,
including human eye movement [55], foveal vision [25], visual
perception [60], upper limb kinematics [40], target recognition
[49], choice reaction [39], mouse rotation [40], mouse acceleration
function [14, 15, 42] and mouse sensor position [36]. Among them,
human visual perception, upper limb kinematics, mouse rotation,
and mouse acceleration are considered in the model proposed in
this study.

3 THE POINT-AND-CLICK SIMULATION
MODEL

The proposed simulation model should be understood in three
aspects: (1) a simulated user capable of performing point-and-click,
(2) the task environment given to the simulated user, (3) the policy
of action of the simulated user. In this section we first clearly define
the point-and-click task we want to simulate and then move on to
a detailed description of the simulated user.

3.1 Task Formulation
3.1.1 Environment and Ergonomics. We assume that a right-handed
adult with an average limb length performs a point-and-click task
in a typical desktop environment (see Figure 2). The simulated
user looks straight at the centre of the monitor and the distance to
the monitor is assumed to be 63cm [29]. The height of the user’s
elbow is equal to the height of the desk surface on which the mouse
is placed. It was assumed that the friction on the desk surface is
negligible. The simulated user is assumed to operate a standard
computer mouse that is light enough to have no difficulty in moving.
The mouse is superimposed longitudinally on the user’s hand in
a neutral position and does not slide or rotate in the user’s hand
while moving. The mouse sensor is located below the centre point
of the user’s hand and the acceleration function [14] of the mouse is
assumed to be the default slider setting provided by Mac OS X 10.12.
The size of the monitor is 46.08 cm × 25.92 cm and has sufficient
resolution to display the cursor and target.
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Figure 2: The environment of the point-and-click task given to the simulated user in this study

3.1.2 Task. The simulated user has to move the mouse to place the
cursor inside a circular target on the screen and then generate a click
event. The target can either move at a constant velocity or be fixed.
If the target moves and hits the edge of the screen, it bounces as
though reflected and maintains its speed. If the user raises a mouse
button click event when the user’s cursor is positioned within the
target, the trial is considered successful. Otherwise, it is considered
to have failed. Immediately after the user activates a click, a new
target with random velocity (speed in the range 0–0.509 m/s) is
created with a random size (radius in the range 9–24 mm) at a
random location on the screen regardless of whether the click was
successful or not. The background colour of the task and the colour
of the target and cursor have sufficiently high contrast values so
that the user can easily distinguish them (e.g., white target on a
black background).

3.2 The Simulated User
The simulated user consists of five modules: (1) motor control
module, (2) click action module, (3) visual perception module, (4)
upper limb module, and (5) mouse module. Each module has the
following functions:
• The motor control module creates a cursor motor plan
(C) that can move the cursor to the target.
• The click action module determines whether or not to
activate the click and, if so, its timing.
• The visual perception module receives the velocity and
position of the target and the cursor, and the position of
the hand from the environment, and outputs the perceived
values including perceptual noise.
• The mouse module simulates the process of converting the
motor plan of the cursor (C) into the motor plan of the hand
(H ) and how the cursor will move when the motor plan of
the hand is executed.
• The upper limb module simulates the rotation of the mouse
by assuming the arm is a two-dimensional (2D) three-degree-
of-freedom (3-DOF) manipulator with three revolute joints
(shoulder, elbow, and wrist). This module also simulates
the Gaussian additive motor noise proportional to the hand
movement speed.

This section details the actual implementation of a simulated user.
First, we describe the simulation environment and then each mod-
ule.

3.2.1 Simulation Environment. The user simulation is performed
in a discrete time with constant step (∆t = 0.05 s). This minimum
time unit of the simulation reflects that the EMG burst observed
in the human motor control process usually lasts for 50 ms [11]. If
the time taken from the start of the simulation (t = 0) to the i-th
time step is ti , the position and velocity of the cursor (pc and vc )
and the position and velocity of the target (pt and vt ) in the i-th
time step are represented as follows:

pc [ti ] = (pxc [ti ] , p
y
c [ti ]) vc [ti ] = (vxc [ti ] , v

y
c [ti ])

pt [ti ] = (pxt [ti ] , p
y
t [ti ]) vt [ti ] = (vxt [ti ] , v

y
t [ti ])

(1)

The coordinates of the cursor and target are expressed in meter
units based on a coordinate system where the origin is located at
the bottom left of the monitor screen (see Figure 2).

The position and velocity vector of the centre of the hand (ph
and vh ) holding the mouse are expressed as follows:

ph [ti ] = (p
x
h [ti ] , p

y
h [ti ]) vh [ti ] = (v

x
h [ti ] , v

y
h [ti ]) (2)

The coordinates of the hand are expressed in meter units based on
the desk coordinate system where the position of the hand is (0,0)
when the limb is in its neutral position (see Figure 2). The target
radius is expressed as Rt in meter units.

3.2.2 Motor Control Module. The motor control module imple-
ments an existing model of human intermittent motor control, the
BUMP model [10–12], which assumes that the process of plan-
ning and executing human-aimed movement consists of a series of
BUMPs. A BUMP is further divided into three successive processes:
sensory analysis (SA), response planning (RP), and response execu-
tion (RE). These three processes do not overlap each other and each
take the same time intervalTp (= 0.1 s). BUMPs that are adjacent to
each other overlap by Tp and are performed in parallel (Figure 3).

In SA, the simulated user perceives the position and velocity
of the target and cursor from a given stream of sensory signals.
With perceived information, the agent in RP builds a motor plan to
bring the cursor to the target. The motor plan is built only with the
information already perceived in the previous SA, and once the RP
has started, the newly perceived environmental information is no
longer reflected in the current motor plan due to the psychological
refractory period (PRP) of the central nervous system (CNS) [57].
Finally, in RE, the agent executes the motor plan obtained from RP.

Of the three processes in BUMP, RP is central. SA and RE are
described in more detail along with other modules, whereas here
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Figure 3: In the BUMP model, the human intermittent motor control process is performed as a series of BUMPs. A BUMP
consists of three processes: sensory analysis (SA), response planning (RP), and response execution (RE). Successive BUMPs
partially overlap each other. t0 is the moment when the RP of the current BUMP starts and Th is the prediction horizon for
planning the motor plan in the current RP.

we focus on describing the RP process. Let t0 be the point at which
the current RP starts. The RP constructs a motor plan of the cursor
to be executed in the subsequent RE based on the two pieces of
information perceived from the previous SA. The first information
is the position and velocity of the cursor at the end of the current
RP. If we put a hat (̂ ) on the perceived value, each of this informa-
tion can be written in this form: p̂c [t0 +Tp ] and v̂c [t0 +Tp ]. The
second information is the position and velocity of the target that
the simulated user aims to reach with the cursor. The user uses the
perception of the target’s future position and velocity at the time
Th passes after the current RP is over. Each of this information can
be written like this: p̂t [t0 +Tp +Th ] and v̂t [t0 +Tp +Th ]. Here, Th
is a variable called the prediction horizon that represents the degree
of predictive control.

The final goal of RP is to create a cursor motor plan C that can
make the position and velocity of the cursor and the target the same
at the end of the prediction horizon (t = t0 + Tp + Th ). Here, the
assumption was introduced that the user will pursue the equality
of velocity because it reduces the relative speed between the cursor
and the target, thus making it easier for the simulated user to plan
and execute the click action. Due to the redundancy in the human
motor system [63], there can be a myriad of motor programs that
satisfy the condition. The BUMP model resolves this redundancy
by assuming optimality of the user; the simulated user is assumed
to build an optimal cursor motor plan C that minimises the mean
squared acceleration of cursor movement:

C0 = OTG(̂pc , v̂c , p̂t , v̂t ) =
{
pc [ti ], vc [ti ]

}
where, ti = (t0 +Tp ) to (t0 +Tp +Th )

(3)

Here, the subscript 0 indicates that the motor plan C was made
from the current BUMP’s RP. Similarly, the motor plan made from
the previous BUMP can be represented as C−1, and the motor plan
to be made at the next BUMP can be used as C+1.OTG is a function
that receives perceptions from SA and returns a cursor motor plan,
which represents the optimal trajectory generation. OTG consists of
simple matrix operations; please refer to the original paper for de-
tailed function implementation [10–12]. The Figure 4 below shows

the motor plan of the cursor made from OTG when the cursor is
stopped initially at (0,0) and the future velocity and position of the
target are (-0.05, 0) and (0.1, 0.2) (units:m/s andm, respectively).

As soon as RP is finishes, the built motor plan C0 starts to be
executed in the subsequent RE. While C0 is running, the next BUMP
plans a newmotor plan C+1, and when it is ready, the agent replaces
the existing motor plan with it (i.e., intermittent motor control).
For each new BUMP, the prediction horizon Th must be set. In this
study, the simulated user adjusts the Th value based on the policy
of action optimised through reinforcement learning.

3.2.3 Click Action Module. The click action module simulates the
process by which the simulated user plans and executes the click
action while the cursor is moving toward the target. The module is
implemented based on the intermittent click planning (ICP) model
[53], the latest model of user click performance. The main tenet
of the model is that the process of determining the click action
is performed in the middle of the target-tracking movement. In
particular, themodel assumes that whenever the user’s cursormotor
plan is intermittently updated, the user establishes a new click plan.
This can be explained in conjunction with the BUMP model as

Figure 4: In the RP stage of the BUMPmodel, the user builds
an optimal motor plan that can move the cursor to the tar-
get. This process can be implemented through theOTG func-
tion, and the resultant cursor trajectoryminimises themean
squared acceleration.
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follows: Based on the sensory signals given during the execution of
the latest motor plan C0, the user must decide when to execute the
click action. The model assumes that this decision-making occurs
in parallel with the motor control and is performed by the user’s
internal clock.

LetWt be the expected duration it takes for the cursor to pass
through the target during the execution of the current motor plan
C0. The ICP model assumes that the user perceivesWt from the
average velocity of the relative motion between the cursor and the
target (see Figure 5). Note that the perception ofWt is not based
on the ideal motor plan, but rather on the actually executed motor
plan, including motor noise and effects of the input device. In this
situation, the user’s goal is to generate a click input withinWt from
the moment the cursor makes first contact with the target.

Figure 5: According to the ICPmodel, the user integrates two
sensory cues given during the execution of the current mo-
tor plan in order to estimate the optimal timing of the click
action.

According to the ICP model, two sensory cues can be given for
the user’s internal clock to estimate the optimal click timing. First,
by perceiving the relative motion between the target and the cursor,
the users can predict when the cursor will contact the target and
estimate its click timing; this is called the visually perceivable
movement cue [41]. Second, if the click action has been repeatedly
executed before, the user can estimate when the next click should be
from the time period of the repetition. This is called the temporal
structure cue [41, 43]. Let the click timing estimated from each
cue be tv (from visually perceivable movement cues) and tt (from
temporal structure cues). According to the model, the posterior
probability distribution of the user’s input timing estimation is
generally Gaussian. If the cursor first contacts the target at t = 0,
then the mean (M) of each estimate can be expressed as follows:

M[tv ] = M[tt ] = cµ ·Wt (4)

Above, cµ is a constant and represents the user’s implicit aim point
withinWt . The model then expresses the standard deviation (STD)
of each estimate as follows:

STD[tv ] = cσ (1/(eν ·Tc − 1) + δ ) and STD[tt ] = cσ · P (5)

Here, the STD of the tv increases asTc shortens. TheTc is called the
cue viewing time and is the time from the start of the motor plan’s
execution to the time the cursor makes contact with the target. The
shorter the Tc , the less time the user will have to encode the visual
cues, so the estimate will be less reliable (i.e., higher STD). Second,
the STD of tt increases as the time period P in which the click was
repeated increases. This is due to the scalar property of the human
internal clock [26] in encoding the time period of repeated events.
This can be seen from common experience; it is much harder to

clap once every five seconds than to clap once per second. The cσ ,
ν , and δ are constants that represent the cognitive characteristics
of the simulated user.

According to cue integration theory [65], the user integrates
estimates from different cues in a statistically optimal way. If the
two sensory cues are assumed to be statistically independent of each
other, according to the theory, the mean and standard deviation of
the integrated click timing t C0click obtained for the motor plan C0
can be expressed as follows:

M[t C0click ] = cµ ·Wt

STD[t C0click ] = cσ · P/
√
1 + (P/(1/(eν ·tc − 1) + δ ))2

(6)

Finally, the click action module samples the actual click timing
t C0click from the Gaussian distribution having the above mean and
standard deviation while the motor plan C0 is running.

The shorterWt or the higher the STD of the click timing esti-
mation, the more difficult it is to succeed on the click. Therefore,
the degree of difficulty of the user’s click planning (Dclick ) can be
quantified as follows:

Dclick = log2(
P/

√
1 + (P/(1/(eν ·tc − 1) + δ ))2

Wt
) (unit: bits) (7)

According to the ICP model, the user’s click failure rate increases
in proportion with the value of Dclick . For example, if Dclick is 1
bits, the user’s click failure rate is predicted to be approximately 5
%; for 3 bits, it will be approximately 40 % [43].

Meanwhile, the planning and sampling of the click action de-
scribed thus far is only performed only when the simulated user de-
cides to click. The user’s intention to click is represented by a binary
variableK . If the module decides not to click (K = 0), click planning
and sampling do not occur and the next BUMP is performed as
usual. If the module decides to click (K = 1), the above-described
click planning and sampling process described above is performed
and there will be no subsequent BUMP. Instead, the current motor
plan C0 continues to run and the module executes an impulsive
click action (i.e., zero duration) in the sampled timing t C0click . If the
click timing is later than the end of the motor plan, the click is exe-
cuted immediately after the execution of the motor plan finishes.
IfWt is zero because the cursor has not penetrated the target, the
click action is executed immediately at the end of the motor plan.
The instant the click action is executed, a new BUMP begins for
the newly given target.

3.2.4 Visual Perception Module. For the motor control module to
build a cursor motor plan C0, it needs to estimate the future position
and velocity of the cursor and target (see Equation 3). Let t0 be the
moment when the current RP starts. RP must perceive the future
position and velocity of the cursor at the moment t = (t0 + Tp ).
In addition, RP must perceive the future position and velocity of
the target at the moment t = (t0 +Tp +Th ). The visual perception
module implements the estimation process and the perceptual noise
added to it. How each perception is implemented is described below.

(1) Perceiving cursor position and velocity: We assume that
through the SA process just before the RP, the simulated user can
perceive the position of the cursor with sufficiently high precision
at the moment the RP is started (∴ p̂c [t0] = pc [t0]). In addition, the
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simulated user knows the ideal motor plan C−1, which was planned
in the previous RP and is running in the current RP (i.e., efferent
copy). From these, the user can perceive the position and velocity
of the cursor at the moment (t = t0 +Tp ) as follows:

p̂c [t0 +Tp ] = pc [t0] + (p
C−1
c [t0 +Tp ] − p

C−1
c [t0])

v̂c [t0 +Tp ] = vC−1c [t0 +Tp ]
(8)

Here, pC−1c and vC−1c are the cursor position and velocity retrieved
from the previous motor plan C−1. In the above equation, the user
perceives the future cursor position by predicting that the displace-
ment when the previous motor plan is ideally executed will be
added to the position of the cursor perceived at the moment t0. For
the future velocity of the cursor, the user perceives it as the velocity
when the previous motor plan is executed ideally.

(2) Perceiving target position and velocity:We assume that through
the SA process just before the RP, the simulated user can perceive
the position of the target with sufficiently high precision at the
moment the RP starts (∴ p̂t [t0] = pt [t0]). In addition, we assume
that the user perceives the target’s velocity at the same moment
(̂vt [t0]), but there is significant perceptual noise. To simulate such
perceptual noise, our model implements Stocker’s model of speed
perception [60, 66]:

p( ŝt | s
′
t ) =

1
ŝt
√
2πσs

exp

[
−(ln ŝt − ln s ′t )

2

2σ 2
s

]
(9)

In the above equation, s ′t is the normalised target speed. If st (=
∥vt ∥) is the actual target speed expressed in visual angle (deg/s), s ′t
is calculated as follows: s ′t = 1 + st /s0. Here, s0 is a normalisation
constant that can be set to 0.3 deg/s according to the original paper
[60]. The ŝt is the user’s estimation of the target speed andp (̂st |st ) is
the likelihood of the target speed estimated by the user, as shown in
the above equation, which follows a log-normal distribution. Here,
σs represents the width of the distribution, and the larger it is, the
less reliably the user can estimate the target’s speed. According to
the model, σs decreases as the contrast between the target and the
background increases, and since sufficient contrast was assumed
in this study, the value was set to 0.15 by referring to the original
paper [60].

Eventually, the target velocity perceived at t0 by the user can be
written as:

v̂t [t0] = (̂st [t0] − 1) · s0 · vt [t0] / ∥vt [t0]∥ (unit: deg/s) (10)

Here, it is assumed that noise is only included in the perception of
magnitude rather than direction. In addition, note that we converted
the normalised speed back to the original unit (deg/s). This can be
converted into m/s later for simulation by considering the distance
between the screen and the user (0.63 m).

Finally, the module assumes that the simulated user extrapolates
the target’s future position based on the perception of the target
velocity at t0 as follows:

p̂t [t0 +Tp +Th ] = pt [t0] + (Tp +Th ) · v̂t [t0] (11)

For the target’s future velocity, it is assumed that the user expects
that the target will continue maintaining their velocity perceived
at t0:

v̂t [t0 +Tp +Th ] = v̂t [t0] (12)

We assume that the simulated user can estimate the future position
and velocity of the target including the effect that the target bounces
at the edge of the screen without any additional perceptual noise.

3.2.5 Mouse Module. The motor plan generated from the motor
control module governs the cursor movement. However, the user
must move the mouse with their hand to control the cursor, so
it is necessary to explain the process of how the user converts
the motor plan of the cursor C0 into the motor plan of the hand
H0. The mouse module implements two components to simulate
this: (1) mouse acceleration function [14] and (2) mouse coordinate
disturbance [40].

Figure 6: The simulated user has to convert the cursor’s mo-
tor plan to the hand’s motor plan. In this process, the user
uses the mouse coordinate system captured at the end of RP
as the reference coordinate system for the conversion.

Before explaining the conversion process, we need to specify
in which coordinate system the user will plan H0. There are two
possibilities; first, the user can plan it based on a fixed coordinate
system on the desk. Second, the user can plan it based on the sensor
coordinate system fixed to the mouse. According to a previous
study [68], users decide the direction of the input based on the field
of view they expect to get when looking at the input device (i.e.,
the visual field compatibility). Therefore, the model assumes that
the user will convert C0 into H0 based on the mouse coordinate
system rather than the desk coordinate system. However, the mouse
coordinate system continues to rotate while the hand is moving
[40]. We assume that the user perceives how the mouse coordinate
system will be rotated at the end of the RP (t = t0+Tp ) and converts
C0 toH0 with respect to the coordinate system (see Figure 6). It is
assumed that this process does not include perceptual noise.

(1) Mouse acceleration function: The mouse acceleration function
is a function that maps the speed of the mouse body or the user’s

Figure 7: If the mouse rotates while the hand is moving, the
cursormovement will be pulled in the y-axis directionmore
than the user intended; this is called coordinate disturbance
and occurs during mouse control.
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Figure 8: The upper limb of the simulated user was modelled as a 3-DOF manipulator (left). The cost perceived by the user is
in accordance with the rotational degree of each joint (middle, copied with permission from [37]). The degree of rotation of
the mouse depends on where the hand is placed on the desk (right)

hand (∥vh ∥) to the speed of the cursor (∥vc ∥) [14, 42]. The function
(facc ) can generally be expressed as:

∥vc ∥ = facc (∥vh ∥) (13)

The acceleration function is usually set differently depending on
the input device, operating system (OS), and OS version [14]. We
replicated the simulated user’s acceleration function (Mac OS X
10.12, system default slider setting) using the Libpointing library
[14].

The module assumes that the simulated user can determine the
hand speed inversely, taking full account of the mouse acceleration
function:

For each vc [ti ] ∈ C0

H0 ←− vh [ti ] = f −1acc (∥vc [ti ]∥) · vc [ti ]/∥vc [ti ]∥
(14)

From this transformation, the velocity vector of the hand is in the
same direction as the velocity of the cursor (w.r.t. the different
coordinate system), but has a different magnitude considering the
effect of the acceleration function inversely. The hand position plan
is obtained by integrating the velocity plan as follows:

H0 ←− ph [ti ] = ph [t0 +Tp ] +
ti∑

t=t0+Tp

vh [ti ] (15)

Note that to simplify the model, it is assumed that the position of
the hand at the end of the RP (ph [t0 +Tp ]) is perceived by the user
without noise.

(2) Mouse coordinate disturbance: When the motor plan of the
hand obtained from the RP is executed in the subsequent RE, the
cursor moves accordingly. The speed of the hand can be converted
into the speed of the cursor using the acceleration function (see
Equation 13). However, determining the direction of cursor move-
ment is not straightforward. According to a previous study [40],
since the mouse rotates while the user moves the mouse, the motor
plan of the hand is not converted into the movement of the cur-
sor as the user intended. This is called coordinate disturbance in
mouse control. When the mouse rotates clockwise (counterclock-
wise) while the hand is moving, the velocity vector of the cursor
rotates slightly counterclockwise (clockwise) every step compared
to the hand velocity vector. This leads to a tendency for the cursor
trajectory to be pulled in the y-direction compared to the hand
trajectory (see Figure 7).

Referring to the previous study [40], the hand motor plan H0
(ph [ti ] and vh [ti ]) can be transformed into the motion of the cur-
sor, taking into account both the acceleration function and the
coordinate disturbance as follows:

vc [ti ] =
facc (∥vh [ti ]∥)
∥vh [ti ]∥

R
[−∆θm

2
− θm

]
vh [ti ]

pc [ti ] = pc [t0 +Tp ] +
ti∑

t=t0+Tp

vc [ti ]
(16)

Here, R is the 2D rotation matrix and θm is the expected amount
of mouse rotation at a specific position on the desk and is thus a
function of hand position ph . ∆θm is the amount of change in θm
between the previous time step (ti−1) and the current time step (ti ).
θm is the output from the upper limb module, which is described
in a later section.

3.2.6 Upper Limb Module. The upper limb module simulates two
phenomena: (1) rotation of the mouse that occurs when the sim-
ulated user moves their hand and (2) motor noise added to hand
movement. Each is described below.

(1) Simulating mouse rotation: In our model, the mouse is at-
tached longitudinally to the simulated user’s hand. Therefore, to
simulate how much the mouse will rotate, we need to simulate how
the human upper limb will move during the mouse control. For
this, the module assumes that the user’s upper limb is a 2D 3-DOF
manipulator (see Figure 8). In the neutral position, the angle of
rotation for each joint is: shoulder (θs =0°), elbow (θe =80°), wrist
(θw =0°). According to previous studies [19, 40], the subjective
discomfort felt by the user for each joint can be expressed as a par-
abolic function of the rotation angle: C(θs ), C(θe ) and C(θw ). From
this, we can solve the inverse kinematics of the limb to minimise
the total sum of discomfort. As a result, Figure 8 plots the expected
angle of orientation of the mouse (θm ) for each hand position on
the desk surface.

(2) Signal-dependent motor noise: While the hand motor plan
H is running, the upper limb module also implements the signal-
dependent motor noise [56]. This noise is implemented as a Gauss-
ian random noise with a standard deviation proportional to the
hand speed (i.e., σ = n · ∥vh ∥). At each time step, noise sampled in-
dependently in the parallel and perpendicular directions was added
to the hand velocity vector. The proportional constants in parallel
(n ∥ ) and perpendicular (n⊥) directions were set differently and were
0.2 and 0.02, respectively.
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Figure 9: The upper limb module simulates Gaussian mo-
tor noise that increases in proportion to the movement
speed. This graph showshow the user’smotor noise is imple-
mented in both the direction of the hand’s movement and
the direction perpendicular to it. The simulated user moved
to the target at the distance shown on the x-axis in 0.2 sec-
onds. This faithfully reproduces the experimental results of
previous research [44].

Lin et al. [44] have studied motor noise of users when performing
ballistic aimed movements using a computer mouse. They gave
participants in the experiment the short time of 0.2 seconds to move
the cursor by aiming at a target that was a certain distance away.
Then, at the end of the aimed movement, the distance between
the target centre and the cursor end point was reported for the
direction parallel to and perpendicular to the movement vector. To
compare our motor noise with their results, we set Th to 0.2 s for
the first BUMP and 0.1 s for the second BUMP so that the simulated
user could reach the target in 0.2 seconds. From the simulation,
we confirmed that the output of our simulation on the same task
faithfully reproduced their results (see Figure 9).

3.2.7 Free Parameters of The Simulated User. There are 12 free
parameters that determine the simulated user’s cognitive and be-
havioural characteristics (see Table 1). Setting these parameters
differently permits the simulation of various users with different
cognitive and behavioural characteristics. In this study, we simu-
late an average user ; therefore, the free parameters were set to the
typical mean values reported in previous studies.

3.3 Optimising Policy of Action
We can formulate the simulated user’s point-and-click behaviour as
a Markov decision process (MDP). MDP [7] is a mathematical model
for formulating an agent’s sequential decision-making problem. An
MDP describes the sequential decision-making process using three
components, state, action, and reward. At each discrete decision-
making step, the decision-making agent perceives the state of the
external environment and performs an action, receives a reward
as a result of the action, and arrives at a new state. The goal of
this agent is to maximise the cumulative reward during the entire
decision horizon, called an episode.

In our model, the simulated user’s decision-making takes place
every j-th BUMP and the set of decision-making series from the
time the target is given until the click is made is an episode. At each
j-th BUMP, the state sj perceived by the simulated user, the user’s
action aj and the reward r (sj , aj ) given to the user are expressed
as follows:

• State sj : perceived future cursor position p̂c [t0 + Tp ] and
velocity v̂c [t0 +Tp ], perceived future target position p̂t [t0 +
Tp +Th ] and velocity v̂t [t0 +Tp +Th ], future hand position
p̂h [t0 +Tp ], target radius Rt . These are continuous values.
• Action aj : prediction horizon Th (0.1 to 2.5 s with 0.1 s inter-
val) and click decision K (0 or 1)
• Reward r (sj , aj ): If the user takes an action aj in a state sj ,
the user will receive the following reward:

r =


−
∑t0+2Tp
t=t0+Tp

∥ Û̂vh [t]∥ if K = 0

R+ −
∑t0+Tp+Th
t=t0+Tp

∥ Û̂vh [t]∥ if K = 1&click success

R− −
∑t0+Tp+Th
t=t0+Tp

∥ Û̂vh [t]∥ if K = 1&click fail

Here, Û̂vh is the acceleration of the hand in the motor planH0
before the signal-dependentmotor noise is added. The sum of
the absolute acceleration values represents the user’s motor
execution effort. Note that this effort term is only obtained
for the time interval in which the motor plan will actually
be executed. R is a reward (R+ = 14) or penalty (R− = −1)
given according to the success or failure of the click.

Note that the state vector above is defined based on the simulated
user’s perceptual variables, while it is usually defined as the true
state variables of the environment. Nevertheless, it still satisfies the
Markov property; that is, the action (aj ) and state (sj ) in the j-th
BUMP determine the probability distribution of the state (sj+1) in
the (j+1)-th BUMP. This allows the problem to be safely formulated
as a MDP. In our model, the transition function T (sj+1 |sj , aj ) is de-
termined through the simulation process described in the preceding
sections.

The value of an action in a specific state is calculated as a sum-
mation of the current and next state rewards. The next reward is
less valuable than the current reward by a discount factor γ , which
we set to 0.95.

3.4 Reinforcement Learning in MDP
The purpose of the MDP formulation is to obtain the optimal action
policy π – a probabilistic rule that determines which action the
decision-making agent should perform for a given state – of the sim-
ulated user. We can achieve the goal by employing a reinforcement
learning algorithm that learns an optimal policy π that earns the
maximum cumulative reward. To compare different policies - and
thus calculate the optimal policy - many reinforcement learning
algorithms use the notion of “Q function”. Q functions measure
the goodness of a particular state and action pair: how good is
it for an agent to employ a particular action at a particular state.
By definition, it is the expected discounted rewards that the agent
collects totally by following the specific policy until the end of the
decision horizon.

If theMDP formulation has a large state and action space, visiting
every state for each employable policy and executing every action
to calculate the Q function becomes quickly infeasible. Function
approximation can be useful in such a case. In particular, Deep
Q-Network [46] has been proven to be efficient and effective for
learning the optimal policy. DQN is known to be sample efficient in
discrete action space, which is beneficial for our simulation setup. In
addition, DQN has the advantage of being applicable to cases where
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Table 1: This table shows the free parameters that describe the simulated user’s cognitive and behavioural characteristics. The
parameter values were set by referring to previous studies assuming an average user.

Variable Description Value Ref Module
Tp Planning time interval 0.1 s [11] Motor control
nv Motor noise constant (parallel) 0.2 [44] Upper limb
np Motor noise constant (perpendicular) 0.02 [44] Upper limb
lse Shoulder-to-elbow length 25.7 cm [40] Upper limb
lew Elbow-to-wrist length 25.7 cm [54] Upper limb
lwh Wrist-to-hand length 6.43 cm [40] Upper limb
σv Width of likelihood of visual speed perception 0.15 [60] Visual perception

fдain () Mouse acceleration function OS X 10.12 [14] Mouse
cσ Precision of internal clock 0.09015 [41, 53] Click action
cµ Implicit aim point 0.185 [41, 53] Click action
ν Drift rate 19.931 [41, 53] Click action
δ Visual encoding precision limit 0.399 [41, 53] Click action

the state space is much larger or even the state space is continuous.
This allows the proposed simulation model to be extended to more
general situations in the future, for example, the visual module
receives raw pixels of the screen as input.

A deep Q-Network uses a neural network to approximate the Q
functions. Specifically, the neural network in the DQN takes the
current state as the input and outputs a vector containing the Q
(function) value of every action. Then, DQN uses an epsilon-greedy
algorithm to probabilistically choose between the action with the
highest Q value and a random action. In simple terms, the DQN
algorithm iterates the following steps to learn the optimal policy:

(1) Under the agent’s current policy, gather and store samples
in a “memory” called a replay buffer. The samples are called
“experiences”.

(2) Randomly sample batches of experiences from the replay
buffer. This part is called the “experience replay”.

(3) Use the sampled experiences to update the Q network values,
which will later be used to choose the “optimal action”, and
ultimately describe the optimal policy.

(4) Repeat steps 1–3 until agent’s reward converges.

When training the DQN, the “experience replay”in step 2 alleviates
the possible correlations in the consecutive training examples in
most recent transitions, which otherwise would drive the network
into a local minimum. The details of the algorithm, including its
pseudocode, can be found in the work by Mnih et al. [46].

3.4.1 Training Implementation and Setup. For the approximation
of the Q function, we trained the neural network with an input layer
including 11 units which is the number variables that describes
our definition of a state (five 2D vectors and one scalar), one fully
connected hidden layer (512) and an output layer with 50 units
which is the number of available actions at each state (25 Th × 2 K ).
The neural network weights were initialised with random seeds.
We used Adam [37] for learning the weights of the neural network.
The simulated user performed four million episodes of the point-
and-click task defined in Section 3.1.2. Setting the hyperparameters,
we followed the original DQN experiments [46]. However, differ-
ences existed between the two setups, and we adjusted accordingly.
For example, the original DQN paper took images data through

convolution as the input, whereas ours was a well-defined point-
and-click scenario. Our ground rule for fine-tuning was to search
for a parameter set with which the loss values in the loss plot were
fluctuating within a reasonable boundary to our visual judgements.
We also reduced the discount factor to 0.95 from 0.99 in the original
paper because our simulation setup had a much smaller state space
and much shorter decision horizon.

For the replay memory, the minibatch size was 32, and the size of
replay memory was 100,000. The target network update frequency
was set to 1,000 for the fixed target network. The learning rate
of the network was 0.0001. The training was done on a Windows
desktop PC (Intel Core i7-9700K CPU @ 3.60GHz, 32GB RAM and
NVIDIA GeForce GTX 1070 Ti) and took approximately 6 days for
4,000,000 episodes (i.e., 4,000,000 point and clicks). All the code was
written in Python, using the TensorFlow library (1.15).

3.4.2 Results. As the reward plot in Fig 10 shows, the simulated
agent ’s reward flattens. This convergence indicates that the optimal
policy has been learned.

Figure 10: The simulated agent’s reward, value function val-
ues (Q-value) and training loss.

4 EVALUATION
With the finally obtained simulation model, we conducted three
evaluation studies. The first study evaluated the model’s point-and-
click simulation performance. The output of the simulation was
compared with an existing point-and-click user study dataset [53].
The second study observed how the simulated user’s behaviour
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changed when each sub-module was removed (i.e., ablation study).
In the third study, participants subjectively evaluated how similar
the simulated point-and-click behaviour was to that of the partici-
pants in the dataset used in the first study.

We could not find a suitable baseline model to which we could
compare our model’s performance. The control theoretic models
of Muller et al. [48] are the closest as baselines, but they are not
intended to simulate point-and-click behaviour on moving targets
and do not have an appropriate click mechanism. However, the
control theoretical models do not have to be applied only to the
stationary target in principle, and if the position and velocity infor-
mation on the moving target is input into the model, the model can
output the trajectory of the cursor regardless. Therefore, in a pilot
study, we implemented the second-order lag model (1/m = 42.97,
k = 1.07, d = 0.23, τ = 0.08) proposed by Muller et al. in MATLAB
Simulink (in which they released the model file) to test whether it
can be used as a baseline. In the test, the click action was imple-
mented to execute without failure immediately after the cursor was
positioned inside the target. As a result, we confirmed that the out-
put from the model showed a big difference from the performance
of the participants in the dataset [53] in terms of trial completion
time and cursor trajectory. Therefore, we decided to continue the
evaluation without a baseline.

4.1 Validating Simulation Performance
In the previous ICP model study [53], 16 participants (9 males, 7
females) performed the same point-and-click task as in this study
(see Section 3.1.2). We received the dataset from the authors and
compared the human cursor trajectory and click action with the
outputs from our model. In the dataset, participants performed a
total of 28,800 point-and-click trials. Among them, 494 trials (1.7
%) were removed due to errors in the logging and a total of 28,306
trials remained. The simulated user of our model also performed
the same 28,306 trials. In this process, the simulated user’s initial
cursor position, target position and target velocity for each trial
were set the same as those given to the participants in the ICP study.
However, in our model, even after the trial was over, the existing
motor plan continued to be executed until the new motor plan was
executed, so the initial velocity of the cursor at the beginning of each
trial was different from that of the ICP participants. Additionally,
since ICP participants performed the trials consecutively without
performing them independently, in our model, we assumed that
the first BUMP, which begins after a new target is given, omits SA
and starts with RP. This is the same as implementing a constant
reaction time of Tp (0.1 s).

4.1.1 Results. First, in traditional metrics, our simulation model
successfully reproduced the point-and-click performance of ICP
participants. The mean trial completion time and click failure rates
of ICP participants were 0.89 s (SD=0.45 s) and 37.7 %. For the
simulation model they were 0.84 s (SD=0.42 s) and 31.3 %. When
trials were binned by the target speed or size, the trial completion
time and click failure rate of the simulation model also accurately
reproduced those of the ICP participants (see Figure 11). For the
distribution of trial completion time and click endpoints (w.r.t. target
centre), the output of our model was similar to the distribution of
ICP participants (see Figure 12).

Figure 11: To obtain the mean trial completion time and
click failure rate, equal frequency binning of trials (about
2022 trials in a bin) was performed for the target speed and
radius. Our simulationmodel faithfully reproduced the ICP
participants’ trial completion time and click failure rate.

Cursor trajectories can be evaluated by drawing a phase plot
(position vs. velocity) [48]. However, in this study, the target often
moved, so drawing a phase plot with the absolute cursor position
and velocity would be meaningless. Therefore, we draw phase plots
based on the normalised relative distance between the cursor and
the target. The normalisation was performed by dividing the rela-
tive distance in each trial by the initial distance of the target and the
cursor. In addition, the point-and-click time was also normalized
by dividing it by the completion time of the trial. Figure 13 shows
phase plots of our model and ICP participants. The plot shows that
our model accurately reproduced the participants’ point-and-click
trajectory on average overall. However, since our model was simu-
lated assuming the parameter values of an average user, our model
could not reproduce the variability between participants. Also, at
the beginning of the trial, the simulated user’s cursor appears to
start moving toward the target slower than the participants. We
believe that this is because the last BUMP of the previous trial in
the simulation continued to run at the beginning of the subsequent
trial, and the simulated user had the constant reaction time of 0.1 s.
On the other hand, immediately after clicking, the ICP participants
may have started moving the cursor in anticipation of the next trial
or moved the cursor to a neutral position, such as the center of the
screen, which is advantageous on average in obtaining a randomly
given target.

In Figure 14, we visualise how our simulated user determined
action variables (Th and K) while performing 28,306 point-and-
click trials in this evaluation study. The mean prediction horizon
Th increases up to 2 s at the start of the trial, then immediately
decreases to 1.5 s before slowly decreasing to 0.5 s and then rapidly
decreasing just before the click. The increase inTh at the beginning
of the trial is because the user waits for the target to bounce off the
wall. This leads to higher rewards by reducing the penalty from
the movement effort. For the same reason, if the target is small or
moves fast, the Th value is kept higher in the intermediate stage
of tracking. At the end of the tracking movement, reducing Th is
an essential strategy to successfully acquire moving targets that
do not always stay in the same position. Note that the graph was
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Figure 12: For the distribution of trial completion time and click end point, the simulation successfully reproduced the ICP
participants’ performance.

drawn on the time axis normalised to the trial completion time
(equal frequency binning with about 2,000 trials).

Meanwhile, the click action was mostly executed only when the
click difficulty (Dclick ) was at least 3 bits or less (see Figure 14,
right). However, 3 bits is only the minimum criterion for clicking,
and most of the clicks were actually executed when the difficulty
was about 1.1 bit. The user’s click failure rate was expected to be
approximately 5 % with a difficulty of 1 bit [43]. This is similar to
the click failure rate observed in traditional point-and-click tasks
(typically 4 %).

The simulated user’s click strategy can change if the reward
setting is different. For example, if the reward for click success is
higher (now R+=14), the user will try to click in a safer situation
with a lower Dclick . However, the click failure rate cannot be zero
at any reward setting due to visual noise, motor noise, and mouse
coordinate system disturbance. In fact, when the value of Dclick
was less than 1 bit, the probability of the simulated user executing
the click action was drastically reduced. This phenomenon should
be interpreted not as the user intentionally trying to execute a click
action in a difficult situation but as a result of the user finding it
difficult to perform a tracking movement that enables easy click
planning. There was no significant difference in the click strategy
depending on the speed or size of the target.

4.2 Ablation Study
Our simulation model was a combination of several sub-modules.
We could conduct a so-called ablation study by observing how the
performance changed when each component was removed to see
how these changes contributed to the overall model performance.
Without changing the reward setting, we obtained a simulation
model for each of the following cases using the same DRL method:
(1) w/o motor noise, (2) w/o visual noise, (3) w/o mouse coordinate
disturbance and (4) w/omouse acceleration function. After 4 million
training episodes, we confirmed that the policy of action for each
model with ablation successfully converged. We also tested how
poor the performance of the model became when action variables
(Th and K) were simply fixed without optimisation through DRL
(i.e., fixed-action user). For each simulated user with ablation, we

performed the same evaluation study that was conducted for the
full model.

Other removals were straightforward, but the implementation
of the no acceleration condition and of the fixed-action condition
need to be explained. No acceleration means that the cursor speed
is obtained by multiplying the user’s hand speed by a constant gain
value (i.e. uniform gain function) [15]. We determined the gain
value by dividing the mean cursor speed by the mean hand speed
observed in the full model evaluation (1.904).

For the fixed-action condition,Th was set as the average of allTh
values observed in the full model evaluation (Th=1.1 s). However,
the click decision (K ) is difficult to be fixedwith either 0 or 1 because
it is too artificial to always click or not always click regardless of the
given situation. Instead, we implemented the click to be executed
when the difficulty of click planning (Dclick ) falls below a certain
threshold. When the full model is being simulated, Dclick for each
BUMP can be calculated. Among them, only the BUMPs for which
the click action was executed were selected, and their Dclick values
were averaged. The averaged value was 1.53 bits, and in the fixed-
action model, when the Dclick value in a specific BUMP was lower
than that, the click action was executed.

4.2.1 Results. First, we could confirm that the simulated user’s
performance in the fixed-action condition, which did not have the
optimised policy of action, was greatly degraded. The mean trial
completion time and click failure rate were 1.43 s (SD=0.35 s) and
75.5 %. This is an increase of 0.55 s and 37.8 %p compared to the
ICP participants. According to the phase plot (Figure 15), the user
with the fixed-action has not succeeded in sufficiently reducing the
distance between the target and the cursor and appeared to have
clicked at the cost of click failure to prevent the increased penalty
from the motor effort.

In the absence of visual noise, interesting results were obtained.
The click failure rate was significantly lowered (22.4 %), but the
trial completion time slightly increased (M=1.08 s, SD=0.44 s). If
there was no visual noise, the user could perfectly estimate the
velocity of the target and thus build a motor plan that could more
accurately allow the cursor to reach the target centre. This provided
the simulated user with a much easier situation when planning for
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Figure 13: This is the phase plot of the relative motion between the cursor and the target. The distance was normalised by
dividing it by the initial distance, and the time was normalised by dividing it by the trial completion time. The velocity was
obtained by differentiating the normalised distance. Description of each subplot: (a) average trajectory of all trials performed
by ICPparticipants and the simulated user (note that the simulated user performed the same trials as given to ICPparticipants),
(b) average trajectories for each participant and average trajectories when the simulated user performed the same trials as
each participant did, (c) raw trajectories of all trials performed by participant #16 and raw trajectories when the simulated
user performed the same trials (see supplementarymaterial for other participant cases). The simulation faithfully reproduces
the trajectory of ICP participants on average and the trajectory variability within a participant. However, since the simulated
user only implemented the average user, the variability between ICP participants could not be reproduced. Also, the cursor
trajectory at the beginning of the trial was slightly different from that of the participants due to the assumption of the model
that the last BUMP of the previous trial will continue to be executed in the subsequent trial.

a successful click. Then, the user could devote more effort to target
tracking because the user knew that doing enough target tracking
can create better click planning situations. This would increase the
expected value of the total reward while increasing the user’s trial
completion time.

In the case of the model with no mouse acceleration, the mean
trial completion time and click failure rate were 1.18 s (SD=0.71 s)
and 33.9 %, respectively. Compared to the ICP participants, the click
failure rate slightly decreased by 3.76 %p, and the trial completion
time increased significantly by 0.29 s. This replicated the results of
previous studies; when the acceleration function was not applied,
the user’s point-and-click time increased, and the click failure rate

Figure 14: The simulated user’s action variables observed
in the evaluation study: (1) mean prediction horizon Th as
a function of normalised time (left) and (2) distribution of
click planning difficulties (Dclick ) observed in all the BUMPs
where the click action was executed, that is, K=1 (right).

remained similar [15, 42]. Typical mouse acceleration functions
have a significant effect on the cursor movement only when the
hand speed is relatively fast [14]. Therefore, we interpreted from
this result that the acceleration function reduced the time required
for the tracking movement toward the target but had little effect
on the brief movement just before the click. We could also confirm
this in the phase plot (see Figure 15). When the mouse acceleration
function was removed, the user could not quickly catch up with
the target at the beginning of the trial.

In the absence of motor noise, user performance is improved
compared to that of ICP participants. The mean trial completion
time and click failure rate were 0.78 s (SD=0.38 s) and 27.1 %, respec-
tively. This is an improvement of 0.11 s and 10.6 %p compared to
that of the ICP participants. When there was no coordinate distur-
bance, the mean trial completion time was 0.9 s (SD=0.58 s), and the
click failure rate was 35.6 %, showing almost similar performance
to the full model. According to the previous study [40], coordinate
disturbance affects the performance of users in tasks where the
trajectory of a cursor must be precise, such as when drawing. Since
point-and-click is not such a task, we interpreted that the absence of
coordinate disturbance did not result in a significant performance
difference.

In the case of no visual noise, we found interesting results in
the plot (see Figure 15). When the trials were binned by the target
speed, the trial completion time of the user without visual noise
decreased as the target speed increased. In our interpretation, this
is because as the target speed increased, the motor noise included
in the user’s movement caught up with the target increases, so it
became difficult to plan a click even without visual noise. Therefore,
if the target speed is high, the simulated user goes back to the old
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Figure 15: We examined how the model’s performance changed when a specific component was removed from the full simu-
lation model.

strategy, thereby reducing the effort spent on tracking movements
and executing clicks at risk, even if it is dangerous.

4.3 Subjective Evaluation of Trajectories
We wondered if people could visually distinguish between the
point-and-click behaviour that our model outputs and the point-
and-click behaviour of real users. As such, we prepared real-time
videos of our simulated user and ICP participants performing 28,306
point-and-click conditions on the ICP dataset. Ten people were
shown random pairs of 100 videos of them and asked which of them
were like real human behaviour. On average, people could hardly
differentiate between the output of our model and the behaviour of
ICP participants (57.9% of mean success rate with a 12.31% standard
deviation). The best participant showed a success rate of 76%. After
the experiment, a participant commented that some of the trials
ended so quickly, making it difficult to judge. However, from further
analysis, we did not find any significant difference in the success
rate of participants between trials with a short completion time and
trials with a longer completion time. Figure 16 shows the trajectory
of the target and the cursor in some of the point-and-click videos
the participants saw. The trajectory was not actually visible to the
participants.

5 DISCUSSION
For decades, point-and-click has been the most important task of
HCI. However, our understanding of user’s point-and-click perfor-
mance has not deepened significantly since the era when studies
on Fitts’ law were intensively conducted. Through this study, our
understanding of point-and-click behaviour can be advanced in
two aspects.

First, we demonstrate that the point-and-click behaviour of users,
which Fitts’ law attempts to describe with just two free parameters,

is actually a combination of various sub-processes, such as inter-
mittent motor control, click decision-making, visual perception,
signal-dependent motor noise, input sensing, upper limb kinemat-
ics, and etc. Such bottom-up or mechanistic modelling not only
enables more realistic simulations but also allows us to make imag-
inative interventions to the system. For example, we demonstrated
in the ablation study how the user’s performance changed when
there was no mouse acceleration function or visual noise. This
means that we can provide better answers to w-questions (i.e., what-
if-things-had-been-different questions) to control and improve the
interaction phenomenon [18].

Second, we demonstrated that to realistically simulate the user’s
behaviour, it is not enough to simply combine various sub-processes
and that a consideration of the optimality of the user’s action is
essential. We found that considering the optimality of the user’s
action is not simply finding a fixed optimal action variable but
rather finding the optimal action policy as a total set of actions that
respond to the state of the external environment. This is an idea
that has already been proposed in optimal feedback control theory
[63] and reinforcement learning studies [16], but our study is the
first to apply it to the simulation of point-and-click behaviour.

Despite these contributions, we realise that some assumptions of
the model’s internal mechanisms have been newly presented in this
study and have not been separately validated. Such assumptions
include noise-free perception of the position of the target and the
cursor at the start of RP, the user’s linear extrapolation to the target
future position and the process of converting the cursor motor plan
to a hand motor plan. We are also aware of the limitations that the
applicability of the model has not been explored and that the differ-
ent variations of MDP formulations (e.g., extreme reward settings
or fixed action variables within a trial) have not been compared and
tested. By releasing models and datasets, we hope these limitations
will be discussed and supplemented through future studies.
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Figure 16: From the moment the target is given to the moment the click occurs, the cursor trajectory simulated by our model
(left of each column) and the real user’s cursor trajectory (right of each column) were drawn. In the subjective evaluation study
using the video with the trajectory removed, the participants hardly distinguished between the two trajectories (red: target,
black: cursor)

6 FUTUREWORK
The simulation model proposed in this study reproduces the
cognitive-behavioural mechanisms necessary for humans to per-
form point-and-click tasks as realistically as possible. As a result,
the model can accurately predict the traditional aggregated mea-
sures of point-and-click performance, such as trial completion time
or click failure rate. In addition, the model accurately reproduces
the cursor trajectory and the distribution of click endpoints regard-
less of whether the target is stationary or moving. We hope that this
study will not end as a single trial but will contribute to opening a
new chapter in HCI modelling research. To this end, we present the
following five opportunities for the model to improve in the future.

(1) Perceiving complex target movement: In this study, we only
dealt with cases in which the user could easily perceive the move-
ment pattern of the target (i.e., movement at a constant velocity).
However, when the target movement became complicated, the
time required for point-and-click increased significantly [59]. By
referring to past studies on moving target interception [23] or
coincidence-anticipation [64], the visual perception module of our
model can be improved to be applied to more complex target move-
ments.

(2) Role of eye gaze: According to previous studies [31, 32, 39],
the movement of the user’s gaze has a significant effect on the
performance of information encoding from given targets. For exam-
ple, when multiple targets are given, the user should recognise the
target to be acquired as soon as possible by moving their gaze in
an optimal manner. In the future, the EMMA model for simulation
of gaze movement [55], drift-diffusion model [39] and foveal vision
model [25] for simulation of user’s visual encoding process should
be considered in model implementation.

(3) Reward function: Depending on the reward setting, the results
of the reinforcement learning vary greatly. However, this study only
validated the model for a single-reward setting. In the future, it is
necessary to explore how the simulated user’s behaviour changes
in a special reward setting, such as when the penalty for failure to
acquire a target is very high. Additionally, through inverse rein-
forcement learning [1], we could be able to determine the reward
settings from expert users’ point-and-click data.

(4) Preparation for the next trial: Our model successfully simu-
lated the user’s point-and-click behaviour in a single trial. However,
when consecutive trials are given, how the user prepares for the
newly given target has not been sufficiently considered. Rather
than simply reacting to the next target, the user may choose a spe-
cial strategy, such as anticipating where the target will appear or
moving the cursor to a neutral position that is easier on average
to acquire targets. For a more realistic simulation, in the future
the model need to implement such an advanced input preparation
mechanism that runs across trials.

(5) Simulation of individual user behaviour : In this study, an av-
erage user was simulated. However, it would be an interesting
future study to investigate whether it is possible to reproduce the
behaviour of individual users by adjusting model parameters. If
it proves possible, a more general simulation of point-and-click
behaviour, including end-user variability, can be implemented us-
ing parameter distributions measured at the population level for
multiple users.

Simulating the behaviour of users with special cognitive and
motor characteristics, such as seniors and e-sports athletes, would
also be interesting. In this regard, previous studies have reported
that the BUMP model can account for 10 Hz physiological tremors
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of humans [12], and that the parameters of the ICP model can reveal
significant differences in cognitive characteristics between gamers
and non-gamers [53].
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